Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2019_22_6_a8, author = {S. E. Pustovoytov}, title = {Topological analysis of a~billiard in elliptic ring in a~potential field}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {201--225}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a8/} }
TY - JOUR AU - S. E. Pustovoytov TI - Topological analysis of a~billiard in elliptic ring in a~potential field JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2019 SP - 201 EP - 225 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a8/ LA - ru ID - FPM_2019_22_6_a8 ER -
S. E. Pustovoytov. Topological analysis of a~billiard in elliptic ring in a~potential field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 201-225. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a8/
[1] Birkgof Dzh., Dinamicheskie sistemy, Gostekhizdat, M.–L., 1936
[2] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, RKhD, Izhevsk, 1999
[3] Vedyushkina (Fokicheva) V. V., Fomenko A. T., “Integriruemye topologicheskie billiardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Ser. matem., 81:4 (2017), 20–67 | DOI | MR | Zbl
[4] Vedyushkina V. V., Fomenko A. T., Kharcheva I. S., “Modelirovanie nevyrozhdennykh bifurkatsii zamykanii reshenii integriruemykh sistem s dvumya stepenyami svobody integriruemymi topologicheskimi billiardami”, Dokl. RAN, 479:6 (2018), 607–610 | DOI | MR | Zbl
[5] Kobtsev I. F., Topologiya sloeniya Liuvillya integriruemogo billiarda v potentsialnom pole, Kurs. rabota, Mekhaniko-matematicheskii fakultet MGU. Kafedra differentsialnoi geometrii i prilozhenii, 2016
[6] Kozlov V. V., “Nekotorye integriruemye obobscheniya zadachi Yakobi o geodezicheskikh na ellipsoide”, Prikl. matem. i mekh., 59:1 (1995), 3–9 | MR | Zbl
[7] Fedoseev D. A., Fomenko A. T., “Nekompaktnye osobennosti integriruemykh dinamicheskikh sistem”, Fundam. i prikl. matem., 21:6 (2016), 217–243 | MR
[8] Fokicheva V. V., “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | DOI | MR | Zbl
[9] Fokicheva V. V., Fomenko A. T., “Integriruemye billiardy modeliruyut vazhnye integriruemye sluchai dinamiki tverdogo tela”, Dokl. RAN, 465:2 (2015), 150–153 | DOI | MR | Zbl
[10] Kharlamov M. P., “Topologicheskii analiz i bulevy funktsii. I. Metody i priblizheniya k klassicheskim sistemam”, Nelineinaya dinamika, 6:4 (2010), 769–805
[11] Yakobi K., Lektsii po dinamike, Gostekhizdat, M., 1936
[12] Fokicheva V. V., Fomenko A. T., “Billiard systems as the models for the rigid body dynamics”, Studies in Systems, Decision and Control, Adv. Dynam. Syst. Control, 69, eds. V. A. Sadovnichiy, M. Z. Zgurovsky, Springer, 2016, 13–32 | DOI | MR
[13] Fomenko A. T., Konyaev A. Yu., “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Its Appl., 159 (2012), 1964–1975 | DOI | MR | Zbl
[14] Fomenko A. T., Nikolaenko S. S., “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. Phys., 87 (2015), 115–133 | DOI | MR | Zbl
[15] Landau L. D., Lifshitz E. M., Mechanics, Butterworth–Heinemann, 1976