Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2019_22_6_a6, author = {E. A. Kudryavtseva and S. A. Podlipaev}, title = {Superintegrable {Bertrand} magnetic geodesic flows}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {169--182}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a6/} }
E. A. Kudryavtseva; S. A. Podlipaev. Superintegrable Bertrand magnetic geodesic flows. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 169-182. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a6/
[1] Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981
[2] Zagryadskii O. A., Kudryavtseva E. A., Fedoseev D. A., “Obobschenie teoremy Bertrana na poverkhnosti vrascheniya”, Matem. sb., 203:8 (2012), 39–78, arXiv: 1109.0745 | DOI | MR | Zbl
[3] Kudryavtseva E. A., Fedoseev D. A., “Mekhanicheskie sistemy s zamknutymi orbitami na mnogoobraziyakh vrascheniya”, Matem. sb., 206:5 (2015), 107–126 | DOI | MR | Zbl
[4] Kudryavtseva E. A., Fedoseev D. A., “O mnogoobraziyakh Bertrana s ekvatorami”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 71:1 (2016), 40–44 | MR | Zbl
[5] Kudryavtseva E. A., Fedoseev D. A., “Superintegriruemye bertranovy naturalnye mekhanicheskie sistemy”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril., 148, 2018, 37–57
[6] Neishtadt A. I., Usrednenie, adiabaticheskie invarianty i periodicheskie traektorii dvizheniya v mnogomernom magnitnom pole, Rukopis, 1998
[7] Podlipaev M. A., Geometricheskie svoistva naturalnykh mekhanicheskikh sistem na poverkhnostyakh vrascheniya, Kursovaya rabota 3-go kursa, Mekhaniko-matematicheskii fakultet MGU, 2015 http://dfgm.math.msu.su/files/0students/2015-kr3-Podlipaev.pdf
[8] Bertrand J., “Théorème relatif au mouvement d'un point attiré vers un centre fixe”, C. R. Acad. Sci. Paris, 77 (1873), 849–853 | Zbl
[9] Darboux G., “Étude d'une question relative au mouvement d'un point sur une surface de révolution”, Bull. Soc. Math. Fr., 5 (1877), 100–113 | DOI | MR | Zbl
[10] Kudryavtseva E. A., Periodic solutions of planetary systems with satellites and the averaging method in systems with slow and fast variables, 2012, arXiv: 1201.6356 | MR
[11] Perlick V., “Bertrand spacetimes”, Class. Quantum Grav., 9 (1992), 1009–1021 | DOI | MR | Zbl