Superintegrable Bertrand magnetic geodesic flows
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 169-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of description of superintegrable systems (i.e., systems with closed trajectories in a certain domain) in the class of rotationally symmetric natural mechanical systems goes back to Bertrand and Darboux. We describe all superintegrable (in a domain of slow motions) systems in the class of rotationally symmetric magnetic geodesic flows. We show that all sufficiently slow motions in a central magnetic field on a two-dimensional manifold of revolution are periodic if and only if the metric has a constant scalar curvature and the magnetic field is homogeneous, i.e., proportional to the area form.
@article{FPM_2019_22_6_a6,
     author = {E. A. Kudryavtseva and S. A. Podlipaev},
     title = {Superintegrable {Bertrand} magnetic geodesic flows},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {169--182},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a6/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
AU  - S. A. Podlipaev
TI  - Superintegrable Bertrand magnetic geodesic flows
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 169
EP  - 182
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a6/
LA  - ru
ID  - FPM_2019_22_6_a6
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%A S. A. Podlipaev
%T Superintegrable Bertrand magnetic geodesic flows
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 169-182
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a6/
%G ru
%F FPM_2019_22_6_a6
E. A. Kudryavtseva; S. A. Podlipaev. Superintegrable Bertrand magnetic geodesic flows. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 169-182. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a6/

[1] Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981

[2] Zagryadskii O. A., Kudryavtseva E. A., Fedoseev D. A., “Obobschenie teoremy Bertrana na poverkhnosti vrascheniya”, Matem. sb., 203:8 (2012), 39–78, arXiv: 1109.0745 | DOI | MR | Zbl

[3] Kudryavtseva E. A., Fedoseev D. A., “Mekhanicheskie sistemy s zamknutymi orbitami na mnogoobraziyakh vrascheniya”, Matem. sb., 206:5 (2015), 107–126 | DOI | MR | Zbl

[4] Kudryavtseva E. A., Fedoseev D. A., “O mnogoobraziyakh Bertrana s ekvatorami”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 71:1 (2016), 40–44 | MR | Zbl

[5] Kudryavtseva E. A., Fedoseev D. A., “Superintegriruemye bertranovy naturalnye mekhanicheskie sistemy”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril., 148, 2018, 37–57

[6] Neishtadt A. I., Usrednenie, adiabaticheskie invarianty i periodicheskie traektorii dvizheniya v mnogomernom magnitnom pole, Rukopis, 1998

[7] Podlipaev M. A., Geometricheskie svoistva naturalnykh mekhanicheskikh sistem na poverkhnostyakh vrascheniya, Kursovaya rabota 3-go kursa, Mekhaniko-matematicheskii fakultet MGU, 2015 http://dfgm.math.msu.su/files/0students/2015-kr3-Podlipaev.pdf

[8] Bertrand J., “Théorème relatif au mouvement d'un point attiré vers un centre fixe”, C. R. Acad. Sci. Paris, 77 (1873), 849–853 | Zbl

[9] Darboux G., “Étude d'une question relative au mouvement d'un point sur une surface de révolution”, Bull. Soc. Math. Fr., 5 (1877), 100–113 | DOI | MR | Zbl

[10] Kudryavtseva E. A., Periodic solutions of planetary systems with satellites and the averaging method in systems with slow and fast variables, 2012, arXiv: 1201.6356 | MR

[11] Perlick V., “Bertrand spacetimes”, Class. Quantum Grav., 9 (1992), 1009–1021 | DOI | MR | Zbl