Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2019_22_6_a5, author = {I. K. Kozlov}, title = {Integral affine 3-manifolds}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {151--167}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a5/} }
I. K. Kozlov. Integral affine 3-manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 151-167. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a5/
[1] Kozlov I. K., “Klassifikatsiya lagranzhevykh rassloenii”, Matem. sb., 201:11 (2010), 89–136 | DOI | MR
[2] Skott P., Geometrii na trekhmernykh mnogoobraziyakh, Matem. NZN, 39, Mir, M., 1986
[3] Terston U., Trekhmernaya geometriya i topologiya, MTsNMO, M., 2001
[4] Duistermaat J. J. On global action-angle coordinates, Comm. Pure Appl. Math., 33:6 (1980), 687–706 | DOI | MR | Zbl
[5] Fried D., Goldman W., “Three-dimensional affine crystallographic groups”, Adv. Math., 47:1 (1983), 1–49 | DOI | MR | Zbl
[6] Freid D., Goldman W., Hirsh M. W., “Affine manifolds with nilpotent holonomy”, Comment. Math. Helv., 56:4 (1981), 487–523 | DOI | MR
[7] Karpenkov O., Continued fractions and $\mathrm{SL}(2,\mathbb{Z})$ conjugacy classes. Elements of Gauss's reduction theory. Markov spectrum, Geometry of Continued Fractions, 26, Springer, Berlin, 2013 | DOI | MR
[8] Mishachev K. N., “The classification of Lagrangian bundles over surfaces”, Different. Geom. Appl., 6:4 (1996), 301–320 | DOI | MR | Zbl
[9] Sepe D., “Classification of Lagrangian fibrations over a Klein bottle”, Geom. Dedicata, 149:1 (2010), 347–362 | DOI | MR | Zbl