Integral affine 3-manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 151-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

Affine manifolds are called integral if there is an atlas such that all transition maps are affine transformations with integer matrices of linear parts. In this paper, we describe all complete integral affine structures on compact three-dimensional manifolds up to a finite-sheeted covering. Also a complete list of integral affine structures on the three-dimensional torus and compact three-dimensional nilmanifolds was obtained.
@article{FPM_2019_22_6_a5,
     author = {I. K. Kozlov},
     title = {Integral affine 3-manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {151--167},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a5/}
}
TY  - JOUR
AU  - I. K. Kozlov
TI  - Integral affine 3-manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 151
EP  - 167
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a5/
LA  - ru
ID  - FPM_2019_22_6_a5
ER  - 
%0 Journal Article
%A I. K. Kozlov
%T Integral affine 3-manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 151-167
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a5/
%G ru
%F FPM_2019_22_6_a5
I. K. Kozlov. Integral affine 3-manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 151-167. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a5/

[1] Kozlov I. K., “Klassifikatsiya lagranzhevykh rassloenii”, Matem. sb., 201:11 (2010), 89–136 | DOI | MR

[2] Skott P., Geometrii na trekhmernykh mnogoobraziyakh, Matem. NZN, 39, Mir, M., 1986

[3] Terston U., Trekhmernaya geometriya i topologiya, MTsNMO, M., 2001

[4] Duistermaat J. J. On global action-angle coordinates, Comm. Pure Appl. Math., 33:6 (1980), 687–706 | DOI | MR | Zbl

[5] Fried D., Goldman W., “Three-dimensional affine crystallographic groups”, Adv. Math., 47:1 (1983), 1–49 | DOI | MR | Zbl

[6] Freid D., Goldman W., Hirsh M. W., “Affine manifolds with nilpotent holonomy”, Comment. Math. Helv., 56:4 (1981), 487–523 | DOI | MR

[7] Karpenkov O., Continued fractions and $\mathrm{SL}(2,\mathbb{Z})$ conjugacy classes. Elements of Gauss's reduction theory. Markov spectrum, Geometry of Continued Fractions, 26, Springer, Berlin, 2013 | DOI | MR

[8] Mishachev K. N., “The classification of Lagrangian bundles over surfaces”, Different. Geom. Appl., 6:4 (1996), 301–320 | DOI | MR | Zbl

[9] Sepe D., “Classification of Lagrangian fibrations over a Klein bottle”, Geom. Dedicata, 149:1 (2010), 347–362 | DOI | MR | Zbl