Liouville foliation of topological billiards in the Minkowski plane
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 123-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we give the Liouville classification of five interesting cases of topological billiards glued from two flat billiards bounded by arcs of confocal quadrics in the Minkowski plane. For each billiard, we calculate the marked Fomenko–Zieschang molecule, in other words the invariant of an integrable Hamiltonian system that completely determines the type of its Liouville foliation.
@article{FPM_2019_22_6_a4,
     author = {E. E. Karginova},
     title = {Liouville foliation of topological billiards in the {Minkowski} plane},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {123--150},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a4/}
}
TY  - JOUR
AU  - E. E. Karginova
TI  - Liouville foliation of topological billiards in the Minkowski plane
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 123
EP  - 150
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a4/
LA  - ru
ID  - FPM_2019_22_6_a4
ER  - 
%0 Journal Article
%A E. E. Karginova
%T Liouville foliation of topological billiards in the Minkowski plane
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 123-150
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a4/
%G ru
%F FPM_2019_22_6_a4
E. E. Karginova. Liouville foliation of topological billiards in the Minkowski plane. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 123-150. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a4/

[1] Birkgof Dzh. D., Dinamicheskie sistemy, Izd. dom «Udmurtskii universitet», Izhevsk, 1999

[2] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 1999

[3] Vedyushkina (Fokicheva) V. V., Fomenko A. T., “Integriruemye topologicheskie billiardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Ser. Matematika, 81:4 (2017), 20–67 | DOI | MR | Zbl

[4] Dragovich V., Radnovich M., Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2010

[5] Dragovich V., Radnovich M., “Topologicheskie invarianty ellipticheskikh billiardov i geodezicheskikh potokov na ellipsoide”, Fundament. i prikl. matem., 20:3 (2015), 51–64

[6] Kozlov V. V., Treschev D. V., Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo Mosk. un-ta, M., 1991

[7] Kudryavtseva E. A., Nikonov I. M., Fomenko A. T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199:9 (2008), 3–96 | DOI | MR | Zbl

[8] Kudryavtseva E. A., Fomenko A. T., “Gruppy simmetrii pravilnykh funktsii Morsa na poverkhnostyakh”, Dokl. RAN. Ser. Matematika, 446:6 (2012), 615–617 | Zbl

[9] Matveev S. V., Fomenko A. T., “Teoriya tipa Morsa dlya integriruemykh gamiltonovykh sistem s ruchnymi integralami”, Matem. zametki, 43:5 (1988), 663–671 | MR

[10] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Nauka, M., 1998

[11] Fokicheva V. V., “Topologicheskaya klassifikatsiya billiardov v lokalno-ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | DOI | MR | Zbl

[12] Fokicheva V. V., Fomenko A. T., “Integriruemye billiardy modeliruyut vazhnye integriruemye sluchai dinamiki tverdogo tela”, Dokl. RAN. Ser. Matematika, 465:2 (2015), 150–153 | DOI | MR | Zbl

[13] Fomenko A. T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, UMN, 44:1(265) (1989), 145–173 | MR

[14] Fomenko A. T., “Teoriya bordizmov integriruemykh gamiltonovykh nevyrozhdennykh sistem s dvumya stepenyami svobody. Novyi topologicheskii invariant mnogomernykh integriruemykh sistem”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 747–779

[15] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | Zbl

[16] Dragović V., Radnović M., “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4–5 (2009), 479–494 | DOI | MR | Zbl

[17] Fokicheva V. V., Fomenko A. T., “Billiard systems as the models for the rigid body dynamics”, Advances in Dynamical Systems and Control, Stud. Systems Decision Control, 69, Springer, Berlin, 2016, 13–32 | DOI | MR

[18] Fomenko A. T., Symplectic Geometry, Gordon and Breach, Philadelphia, 1995 | MR | Zbl

[19] Fomenko A. T., Konyaev A. Yu., “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Its Appl., 159 (2012), 1964–1975 | DOI | MR | Zbl

[20] Fomenko A. T., Konyaev A. Yu., “Algebra and geometry through Hamiltonian systems”, Continuous Distributed Systems. Theory and Applications, Solid Mech. Its Appl., 211, Springer, Berlin, 2014, 3–21 | DOI | MR | Zbl

[21] Fomenko A. T., Morozov P. V., “Some new results in topological classification of integrable systems in rigid body dynamics”, Proc. of the Workshop «Contemporary Geometry and Related Topics» (15–21 May 2002, Belgrade, Yugoslavia), World Scientific, New York, 2004, 201–222 | DOI | MR | Zbl

[22] Fomenko A. T., Nikolaenko S. S., “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. Phys., 87 (2015), 115–133 | DOI | MR | Zbl

[23] Fomenko A. T., Trofimov V. V., Integrable Systems on Lie Algebras and Symmetric Spaces, Gordon and Breach, Philadelphia, 1988 | MR

[24] Oshemkov A. A., Fomenko A. T., “Invariants of the main integrable cases of the rigid body motion equations”, Adv. Sov. Math., 6 (1991), 67–146 | MR | Zbl