Classification of the gluing matrices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 85-94
Voir la notice de l'article provenant de la source Math-Net.Ru
The Fomenko–Zieschang theory of topological invariants says that the
mark $r$ is zero for the points of centre-centre type.
The mark $\varepsilon$ is known to be dependent on the orientation of the
$Q^3$ manifold, the orientation of the critical circumferences of
the Liouville system's additional integral $F$, and the orientation
of the molecule's ribs. This article investigates the method of
the explicit setting of the basis cycles' orientation and suggests
a way of finding the gluing matrices on the loop molecules of
the points of centre-centre type depending on the allocation of
the arcs of the bifurcation diagram.
@article{FPM_2019_22_6_a2,
author = {A. I. Zhila},
title = {Classification of the gluing matrices},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {85--94},
publisher = {mathdoc},
volume = {22},
number = {6},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a2/}
}
A. I. Zhila. Classification of the gluing matrices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 85-94. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a2/