Classification of the gluing matrices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 85-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Fomenko–Zieschang theory of topological invariants says that the mark $r$ is zero for the points of centre-centre type. The mark $\varepsilon$ is known to be dependent on the orientation of the $Q^3$ manifold, the orientation of the critical circumferences of the Liouville system's additional integral $F$, and the orientation of the molecule's ribs. This article investigates the method of the explicit setting of the basis cycles' orientation and suggests a way of finding the gluing matrices on the loop molecules of the points of centre-centre type depending on the allocation of the arcs of the bifurcation diagram.
@article{FPM_2019_22_6_a2,
     author = {A. I. Zhila},
     title = {Classification of the gluing matrices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {85--94},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a2/}
}
TY  - JOUR
AU  - A. I. Zhila
TI  - Classification of the gluing matrices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 85
EP  - 94
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a2/
LA  - ru
ID  - FPM_2019_22_6_a2
ER  - 
%0 Journal Article
%A A. I. Zhila
%T Classification of the gluing matrices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 85-94
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a2/
%G ru
%F FPM_2019_22_6_a2
A. I. Zhila. Classification of the gluing matrices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 85-94. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a2/

[1] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, RKhD, Izhevsk, 1999

[2] Bolsinov A. V., Rikhter P. Kh., Fomenko A. T., “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. sb., 191:2 (2000), 3–42 | DOI | Zbl

[3] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[4] Fomenko A. T., Tsishang Kh., “O topologii trekhmernykh mnogoobrazii, voznikayuschikh v gamiltonovoi mekhanike”, Dokl. AN SSSR, 294:2 (1987), 283–287 | MR | Zbl

[5] Fomenko A. T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR, 52:2 (1988), 378–407 | Zbl

[6] Kibkalo V., “Topological analysis of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra $\mathrm{so}(4)$”, Lobachevskii J. Math., 39:9 (2018), 1331–1334 | DOI | MR