Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2019_22_6_a2, author = {A. I. Zhila}, title = {Classification of the gluing matrices}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {85--94}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a2/} }
A. I. Zhila. Classification of the gluing matrices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 85-94. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a2/
[1] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, RKhD, Izhevsk, 1999
[2] Bolsinov A. V., Rikhter P. Kh., Fomenko A. T., “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. sb., 191:2 (2000), 3–42 | DOI | Zbl
[3] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl
[4] Fomenko A. T., Tsishang Kh., “O topologii trekhmernykh mnogoobrazii, voznikayuschikh v gamiltonovoi mekhanike”, Dokl. AN SSSR, 294:2 (1987), 283–287 | MR | Zbl
[5] Fomenko A. T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR, 52:2 (1988), 378–407 | Zbl
[6] Kibkalo V., “Topological analysis of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra $\mathrm{so}(4)$”, Lobachevskii J. Math., 39:9 (2018), 1331–1334 | DOI | MR