Bifurcations of minimal fillings for four points on the Euclidean plane
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 253-261
Voir la notice de l'article provenant de la source Math-Net.Ru
A minimal filling of a finite metric space is a weighted graph of a minimal possible weight spanning this space so that the weight of any path in it is not less than the distance between its ends. Bifurcation diagrams of types and the weight of minimal fillings for four points of the Euclidean plane are built in the present work.
@article{FPM_2019_22_6_a10,
author = {E. I. Stepanova},
title = {Bifurcations of minimal fillings for four points on the {Euclidean} plane},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {253--261},
publisher = {mathdoc},
volume = {22},
number = {6},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a10/}
}
TY - JOUR AU - E. I. Stepanova TI - Bifurcations of minimal fillings for four points on the Euclidean plane JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2019 SP - 253 EP - 261 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a10/ LA - ru ID - FPM_2019_22_6_a10 ER -
E. I. Stepanova. Bifurcations of minimal fillings for four points on the Euclidean plane. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 253-261. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a10/