Shape theory
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 19-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Shape theory was founded by K. Borsuk 50 years ago. It is essentially a spectral homotopy theory and occupies an important place in geometric topology. This paper presents the basic concepts and the most important, in our opinion, results of shape theory. Unfortunately, due to space limitation, it is not possible to cover many other interesting problems and results related to this theory. For a more detailed and systematic study of the issues considered in the review, we provide an extensive list of references at the end.
@article{FPM_2019_22_6_a1,
     author = {P. S. Gevorgyan},
     title = {Shape theory},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {19--84},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a1/}
}
TY  - JOUR
AU  - P. S. Gevorgyan
TI  - Shape theory
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 19
EP  - 84
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a1/
LA  - ru
ID  - FPM_2019_22_6_a1
ER  - 
%0 Journal Article
%A P. S. Gevorgyan
%T Shape theory
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 19-84
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a1/
%G ru
%F FPM_2019_22_6_a1
P. S. Gevorgyan. Shape theory. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 19-84. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a1/

[1] Aleksandrov P. S., “Vstupitelnoe slovo”, UMN, 34 (1979), 11–13

[2] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti: vvedenie v teoriyu topologicheskikh prostranstv i obschuyu teoriyu razmernosti, Nauka, M., 1973 | MR

[3] Aleksandrov P. S., Fedorchuk V. V., “Osnovnye momenty v razvitii teoretiko-mnozhestvennoi topologii”, UMN, 33 (1978), 3–48 | Zbl

[4] Bogatyi S. A., “O teoreme Vietorisa dlya sheipov, obratnykh predelakh i odnoi zadache Yu. M. Smirnova”, Dokl. AN SSSR, 211 (1973), 764–767 | MR | Zbl

[5] Bogatyi S. A., “Approksimatsionnye i fundamentalnye retrakty”, Matem. sb., 93 (1974), 90–102 | Zbl

[6] Bogatyi S. A., “O teoreme Vietorisa v kategorii gomotopii i odnoi probleme K. Borsuka”, Fund. Math., 84 (1974), 209–228 | DOI | MR | Zbl

[7] Bogatyi S. A., “Ob $n$-podvizhnosti v smysle Borsuka”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 22 (1974), 821–825 | MR | Zbl

[8] Bogatyi S. A., “O sokhranenii sheipov pri otobrazheniyakh”, Dokl. AN SSSR, 224 (1975), 261–264 | Zbl

[9] Bogatyi S. A., Fedorchuk V. V., “Teoriya retraktov i beskonechnomernye mnogoobraziya”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 24, 1986, 195–270 | Zbl

[10] Borsuk K., Teoriya sheipov, Mir, M., 1976

[11] Bukhshtaber V. M., Mischenko A. S., “$K$-teoriya na kategorii beskonechnykh kletochnykh kompleksov”, Izv. AN SSSR. Ser. matem., 32 (1968), 560–604 | Zbl

[12] Gevorkyan P. S., “O $G$-podvizhnosti $G$-prostranstv”, UMN, 43 (1988), 177–178

[13] Gevorkyan P. S., “Mazhoranty dlya $G$-podvizhnykh kompaktov”, UMN, 44 (1989), 191–192 | Zbl

[14] Gevorkyan P. S., “Ekvivariantnaya teorema Freidentalya i ekvivariantnaya $n$-podvizhnost”, UMN, 56 (2001), 159–160 | DOI | Zbl

[15] Gevorkyan P. S., “Ob odnom kriterii podvizhnosti”, Matem. zametki, 71 (2002), 311–315 | DOI | Zbl

[16] Dranishnikov A. N., “Gomologicheskaya teoriya razmernosti”, UMN, 43:4 (262) (1988), 11–55 | MR

[17] Dranishnikov A. N., “O probleme P. S. Aleksandrova”, Matem. sb., 135 (177):4 (1988), 551–557 | MR | Zbl

[18] Dranishnikov A. N., Schepin E. V., “Kletochnopodobnye otobrazheniya. Problema povysheniya razmernosti”, UMN, 41 (1986), 49–90 | Zbl

[19] Levshenko B. T., “O klassifikatsionnoi teoreme v teorii sheipov”, Soobsch. AN GruzSSR, 93 (1979), 26–28 | MR

[20] Lisitsa Yu. T., “Prodolzhenie nepreryvnykh otobrazhenii i faktorizatsionnaya teorema”, Sib. matem. zhurn., 14 (1973), 128–139

[21] Lisitsa Yu. T., “Klassifikatsionnaya teorema Khopfa v teorii sheipov”, Sib. matem. zhurn., 18 (1977), 143–160 | MR | Zbl

[22] Lisitsa Yu. T., “Teoremy Gurevicha i Uaitkheda v silnoi teorii sheipov”, Dokl. AN SSSR, 283 (1985), 38–43 | Zbl

[23] Smirnov Yu. M., “Ob ekvivariantnykh vlozheniyakh $G$-prostranstv”, UMN, 31 (1976), 137–147 | Zbl

[24] Smirnov Yu. M., “Teoriya sheipov i nepreryvnye gruppy preobrazovanii”, UMN, 34 (1979), 119–123 | Zbl

[25] Smirnov Yu. M., “Teoriya sheipov. I”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 19, 1981, 181–207 | Zbl

[26] Smirnov Yu. M., “Teoriya sheipov dlya $G$-par”, UMN, 40 (1985), 151–165 | Zbl

[27] Chepmen T., Lektsii o $Q$-mnogoobraziyakh, Mir, M., 1981

[28] Chigogidze A. Ch., “$n$-sheipy i $n$-kogomotopicheskie gruppy kompaktov”, Matem. sb., 180 (1989), 322–335 | Zbl

[29] Chigogidze A. Ch., “Teoriya $n$-sheipov”, UMN, 44 (1989), 117–140 | Zbl

[30] Chigogidze A. Ch., “$n$-Sheipovyi funktor na kategorii kompaktov”, Tr. MIAN SSSR, 193, 1992, 217–221 | Zbl

[31] Shostak A. P., “Sheipovaya ekvivalentnost v klassakh kompaktnosti”, Dokl. AN SSSR, 217 (1974), 67–70

[32] Shostak A. P., “Sheipy v klassakh kompaktnosti: retrakty, ekstenzory, podvizhnost”, Uch. zap. Latv. un-ta, 236 (1975), 108–128 | Zbl

[33] Schepin E. V., “Topologiya predelnykh prostranstv neschetnykh obratnykh spektrov”, UMN, 31 (1976), 191–226

[34] Schepin E. V., “Konechnomernyi bikompaktnyi absolyutnyi okrestnostnyi retrakt metrizuem”, Dokl. AN SSSR, 233 (1977), 304–307

[35] Schepin E. V., “O tikhonovskikh mnogoobraziyakh”, Dokl. AN SSSR, 246 (1979), 551–554

[36] Schepin E. V., “Metod obratnykh spektrov v topologii bikompaktov”, Matem. zametki, 31 (1982), 299–315 | MR

[37] Adams J. F., Lectures on $K(X)$, Mimeographed notes, Univ. Manchester, 1962

[38] Adams J. F., “On the groups $J(X)$. IV”, Topology, 5 (1966), 21–71 | DOI | MR | Zbl

[39] Ageev S., Jimenez R., Rubin L. R., “Cell-like resolutions in the strongly countable $Z$-dimensional case”, Topology Its Appl., 140 (2004), 5–14 | DOI | MR | Zbl

[40] Alexander J. W., “A proof of the invariance of certain constants of analysis situs”, Trans. Amer. Math. Soc., 16 (1915), 148–154 | DOI | MR | Zbl

[41] Alexandroff P. S., “Simpliziale Approximationen in der allgemeinen Topologie”, Math. Ann., 96 (1926), 489–511 | DOI | MR | Zbl

[42] Alexandroff P. S., “Une définition des nombres de Betti pour un ensemble fermé quelconque”, C. R. Acad. Sci. Paris, 184 (1927), 317–319 | Zbl

[43] Alexandroff P. S., “Über den allgemeinen Dimensionsbegriff und seine Beziehungen zur elementaren geometrischen Anschauung”, Math. Ann., 98 (1928), 617–635 | DOI | MR

[44] Alexandroff P. S., “Untersuchungen über Gestalt und Lage abgeschlossener Mengen beliebiger Dimension”, Ann. Math., 30 (1929), 101–187 | DOI | MR

[45] Alexandroff P. S., “Dimensionstheorie, ein Beitrag zur Geometrie der abgeschlossenen Mengen”, Math. Ann., 106 (1932), 161–238 | DOI | MR

[46] Alexandroff P. S., “Einige Problemstellungen in der mengentheoretischen Topologie”, Math. Sb., 43 (1936), 619–634

[47] Anderson R. D., “On topological infinite deficiency”, Michigan J. Math., 14 (1967), 365–383 | DOI | MR | Zbl

[48] Anderson R. D., “Strongly negligible sets in Fréchet manifolds”, Bull. Amer. Math. Soc., 75 (1969), 64–67 | DOI | MR | Zbl

[49] Anderson R. D., Henderson D. W., West J. E., “Negligible subsets of infinite-dimensional manifolds”, Compositio Math., 21 (1969), 143–150 | MR | Zbl

[50] Anderson R. D., Schori R. M., “Factors of infinite-dimensional manifolds”, Trans. Amer. Math. Soc., 142 (1969), 315–330 | DOI | MR | Zbl

[51] Antonian S. A., Jimenez R., de Neymet S., “Fiberwise retraction and shape properties of the orbit space”, Glas. Mat., 35 (2000), 191–210 | MR

[52] Antonian S. A., Mardešić S., “Equivariant shape”, Fund. Math., 127 (1987), 213–224 | DOI | MR | Zbl

[53] Armentrout S., “Homotopy properties of decomposition spaces”, Trans. Amer. Math. Soc., 143 (1969), 499–507 | DOI | MR | Zbl

[54] Armentrout S., “UV properties of compact sets”, Trans. Amer. Math. Soc., 143 (1969), 487–498 | MR | Zbl

[55] Artin M., Mazur B., Etale Homotopy, Lect. Notes Math., 100, Springer, Berlin, 1969 | DOI | MR | Zbl

[56] Avakyan T. A., Gevorgyan P. S., “Strong movable categories and strong movability of topological spaces”, J. Contemp. Math. Anal., 45 (2010), 52–59 | DOI | MR | Zbl

[57] Baladze V., “Characterization of precompact shape and homology properties of remainders”, Topology Its Appl., 142 (2004), 73–88 | DOI | MR | Zbl

[58] Baladze V., “On coshapes of topological spaces and continuous maps”, Georgian Math. J., 16 (2009), 229–242 | MR | Zbl

[59] Baladze V., “The (co) shape and (co) homological properties of continuous maps”, Matem. Vesnik, 66 (2014), 235–247 | MR | Zbl

[60] Ball B. J., “Alternative approaches to proper shape theory”, Studies in Topology, Academic Press, New York, 1975, 1–27 | MR

[61] Ball B. J., Sher R. B., “A theory of proper shape for locally compact metric spaces”, Fund. Math., 86 (1974), 163–192 | DOI | MR | Zbl

[62] Bauer F. W., “A shape theory with singular homology”, Pacific J. Math., 64 (1976), 25–65 | DOI | MR | Zbl

[63] Bauer F. W., “A characterization of movable compacta”, J. Reine Angew. Math., 293 (1977), 394–417 | MR | Zbl

[64] Bauer F. W., “Bordism groups and shape theory”, Topology Its Appl., 17 (1984), 115–122 | DOI | MR | Zbl

[65] Bauer F. W., “Extensions of generalized homology theories”, Pacific J. Math., 128 (1987), 25–61 | DOI | MR | Zbl

[66] Bauer F. W., “A strong-shape theoretical version of a result due to E. Lima”, Topology Its Appl., 40 (1991), 17–21 | DOI | MR | Zbl

[67] Bauer F. W., “A strong shape theory admitting an $S$-dual”, Topology Its Appl., 62 (1995), 207–232 | DOI | MR | Zbl

[68] Bestvina M., “Characterizing $k$-dimensional universal Menger compacta”, Mem. Amer. Math. Soc., 71, no. 380, 1988, 1–110 | MR | Zbl

[69] Bilan N. K., “On some coarse shape invariants”, Topology Its Appl., 157 (2010), 2679–2685 | DOI | MR | Zbl

[70] Bilan N. K., “The coarse shape groups”, Topology Its Appl., 157 (2010), 894–901 | DOI | MR | Zbl

[71] Bilan N. K., “Towards the algebraic characterization of (coarse) shape path connectedness”, Topology Its Appl., 160 (2013), 538–545 | DOI | MR | Zbl

[72] Bilan N. K., Uglešić N., “The coarse shape”, Glas. Mat., 42 (2007), 145–187 | DOI | MR | Zbl

[73] Blankinship W. A., “Generalization of a construction of Antoine”, Ann. Math., 53 (1951), 276–297 | DOI | MR | Zbl

[74] Borsuk K., “Sur l'élimination de phenomènes paradoxaux en topologie générale”, Proc. Int. Congr. Math. (Amsterdam, 1954), North-Holland, Amsterdam, 1957, 197–208 | MR

[75] Borsuk K., “Concerning homotopy properties of compacta”, Fund. Math., 62 (1968), 223–254 | DOI | MR | Zbl

[76] Borsuk K., “Concerning the notion of the shape of compacta”, Proc. Int. Symp. Topology Ists Appl. (Herceg-Novi, 1968), Savez Društava Mat. Fiz. Astronom., Beograd, 1969, 98–104 | MR

[77] Borsuk K., “Fundamental retracts and extensions of fundamental sequences”, Fund. Math., 64 (1969), 55–85 | DOI | MR | Zbl

[78] Borsuk K., “On movable compacta”, Fund. Math., 66 (1969), 137–146 | DOI | MR | Zbl

[79] Borsuk K., “A note on the theory of shape of compacta”, Fund. Math., 67 (1970), 265–278 | DOI | MR | Zbl

[80] Borsuk K., “On the concept of shape for metrizable spaces”, Bull. Acad. Polon. Sci., 18 (1970), 127–132 | MR | Zbl

[81] Borsuk K., “On the homotopy types of some decomposition spaces”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 18 (1970), 235–239 | MR | Zbl

[82] Borsuk K., “On the shape of the suspension”, Colloq. Math., 21 (1970), 247–252 | DOI | MR | Zbl

[83] Borsuk K., “On the $n$-movability”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 20 (1972), 859–864 | MR | Zbl

[84] Borsuk K., “On several problems in the theory of shape”, Studies in Topology, Academic Press, New York, 1975, 67–79 | DOI | MR

[85] Borsuk K., Theory of Shape, Polish Sci. Publ., Warszawa, 1975 | MR | Zbl

[86] Borsuk K., Dydak J., What is the theory of shape?, Bull. Austr. Math. Soc., 22 (1980), 161–198 | DOI | MR | Zbl

[87] Borsuk K., Holsztyński W., “Concerning the ordering of shapes of compacta”, Fund. Math., 68 (1970), 107–115 | DOI | MR | Zbl

[88] Brown E. M., “Cohomology theories”, Ann. Math., 75 (1962), 467–484 | DOI | MR | Zbl

[89] Bykov A., Montiel A. L. K., “Strong $G$-fibrations and orbit projections”, Topology Its Appl., 163 (2014), 46–65 | DOI | MR | Zbl

[90] Bykov A., Texis M., “Equivariant strong shape”, Topology Its Appl., 154 (2007), 2026–2039 | DOI | MR | Zbl

[91] Bykov A., Zerkalov L. G., “Cotelescopes and approximate lifting properties in shape theory”, Topology Its Appl., 73 (1996), 197–212 | DOI | MR | Zbl

[92] Calder A., Hastings H. M., “Realizing strong shape equivalences”, J. Pure Appl. Algebra, 20 (1981), 129–156 | DOI | MR | Zbl

[93] Case J. H., Chamberlin R., “Characterizations of tree-like continua”, Pacific J. Math., 10 (1960), 73–84 | DOI | MR | Zbl

[94] Cathey F. W., “Strong shape theory”, Shape Theory Geom. Topology, 870 (1981), 215–238 | DOI | MR | Zbl

[95] Cathey F. W., “Shape fibrations and strong shape theory”, Topology Its Appl., 14 (1982), 13–30 | DOI | MR | Zbl

[96] Cathey F. W., Segal J., “Strong shape theory and resolutions”, Topology Its Appl., 15 (1983), 119–130 | DOI | MR | Zbl

[97] Cathey F. W., Segal J., “Homotopical approach to strong shape or completion theory”, Topology Its Appl., 21 (1985), 167–192 | DOI | MR | Zbl

[98] Čech E., “Théorie générale de l'homologie dans un espace quelconque”, Fund. Math., 19 (1932), 149–183 | DOI

[99] Čerin Z., “On various relative proper homotopy groups”, Tsukuba J. Math., 4 (1980), 177–202 | DOI | MR

[100] Čerin Z., “Lefschetz movable maps”, J. Math. Pures Appl., 72 (1993), 81–103 | MR

[101] Čerin Z., “Equivariant shape theory”, Math. Proc. Camb. Phil. Soc., 117 (1995), 303–320 | DOI | MR

[102] Čerin Z., “Shape via multi-nets”, Tsukuba J. Math., 19 (1995), 245–268 | DOI | MR

[103] Čerin Z., “Equivalence of shape fibrations and approximate fibrations”, Topology Its Appl., 76 (1997), 9–26 | DOI | MR

[104] Chapman T. A., “On some applications of infinite-dimensional manifolds to the theory of shape”, Fund. Math., 76 (1972), 181–193 | DOI | MR | Zbl

[105] Chapman T. A., “Shapes of finite-dimensional compacta”, Fund. Math., 76 (1972), 261–276 | DOI | MR | Zbl

[106] Chapman T. A., “Compact Hilbert cube manifolds and the invariance of Whitehead torsion”, Bull. Amer. Math. Soc., 79 (1973), 52–56 | DOI | MR | Zbl

[107] Chapman T. A., “Simple homotopy theory for ANR's”, Topology Its Appl., 7 (1977), 165–174 | DOI | MR | Zbl

[108] Chapman T. A., “Topological invariance of Whitehead torsion”, Amer. J. Math., 96 (1974), 488–497 | DOI | MR | Zbl

[109] Chigogidze A., “Shape properties of nonmetrizable spaces”, Topology Its Appl., 53 (1993), 259–269 | DOI | MR | Zbl

[110] Chigogidze A., “Infinite dimensional topology and shape theory”, Handbook of Geometric Topology, eds. R. Daverman, R. Sher, North-Holland, Amsterdam, 2001, 307–371 | DOI | MR

[111] Christie D. E., “Net homotopy for compacta”, Trans. Amer. Math. Soc., 56 (1944), 275–308 | DOI | MR | Zbl

[112] Coram D., Daverman R., Duvall P., “A loop condition for embedded compacta”, Proc. Amer. Math. Soc., 53 (1975), 205–212 | MR | Zbl

[113] Coram D. S., Duvall P. F., “Approximate fibrations”, Rocky Mountain J. Math., 7 (1977), 275–288 | DOI | MR | Zbl

[114] Cordier J. M., Porter T., “Vogt's theorem on categories of homotopy coherent diagrams”, Math. Proc. Camb. Phil. Soc., 100 (1986), 65–90 | DOI | MR | Zbl

[115] Cordier J. M., Porter T., “Pattern recognition and categorical shape theory”, Pattern Recognition Letters, 7 (1988), 73–76 | DOI | Zbl

[116] Cordier J. M., Porter T., Shape Theory: Categorical Methods of Approximation, Dover, 2008 | MR | Zbl

[117] Cox C., “Three questions of Borsuk concerning movability and fundamental retraction”, Fund. Math., 80 (1973), 169–179 | DOI | MR | Zbl

[118] Dadarlat M., “Shape theory and asymptotic morphismsfor $C^*$-algebras”, Duke Math. J., 73 (1993), 687–711 | DOI | MR

[119] Deleanu A., Hilton P., “Borsuk shape and a generalization of Grothendieck's definition of pro-category”, Math. Proc. Camb. Phil. Soc., 79 (1976), 473–482 | DOI | MR | Zbl

[120] Demers L., “On spaces which have the shape of $CW$-complexes”, Fund. Math., 90 (1975), 1–9 | DOI | MR | Zbl

[121] Dranišnikov A. N., Repovš D., “Embedding up to homotopy type in Euclidean space”, Bull. Austr. Math. Soc., 47 (1993), 145–148 | DOI | MR | Zbl

[122] Draper J., Keesling J. E., “An example concerning the Whitehead theorem in shape theory”, Fund. Math., 92 (1976), 255–259 | DOI | MR | Zbl

[123] Duvall P. F., Husch L. S., “A continuum of dimension $n$ which does not embed up to shape in $2n$-space”, Proc. Int. Conf. on Geom. Topology, 1980, 113–119 | MR | Zbl

[124] Duvall P. F., Husch L. S., Embedding Coverings into Bundles with Applications, Mem. Amer. Math. Soc., 263, Amer. Math. Soc., Providence, 1982 | MR | Zbl

[125] Dydak J., “Movability and the shape of decomposition spaces”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 23 (1975), 447–452 | MR | Zbl

[126] Dydak J., “On the Whitehead theorem in pro-homotopy and on question of Mardešić”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 23 (1975), 775–779 | MR | Zbl

[127] Dydak J., “Some remarks concerning the Whitehead theorem in shape theory”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 23 (1975), 437–445 | MR | Zbl

[128] Dydak J., “Some remarks on the shape of decomposition spaces”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 23 (1975), 561–563 | MR

[129] Dydak J., “An algebraic condition characterizing FANR-spaces”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 24 (1976), 501–503 | MR | Zbl

[130] Dydak J., “Concerning the abelization of the first shape group of pointed continua”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 24 (1976), 615–620 | MR | Zbl

[131] Dydak J., “$1$-movable continua need not be pointed $1$-movable”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 25 (1977), 559–562 | MR | Zbl

[132] Dydak J., “A simple proof that pointed FANR-spaces are regular fundamental retracts of ANR's”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 25 (1977), 55–62 | MR | Zbl

[133] Dydak J., “On a paper of Y. Kodama”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 25 (1977), 165–170 | MR | Zbl

[134] Dydak J., “Some properties of nearly $1$-movable continua”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 25 (1977), 685–689 | MR | Zbl

[135] Dydak J., “On $\mathrm{LC}^n$-divisors”, Topology Proc., 3 (1978), 319–333 | MR

[136] Dydak J., “On unions of movable spaces”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 26 (1978), 57–60 | MR | Zbl

[137] Dydak J., “On algebraic properties of continua”, Bull. Acad. Polon. Sci. Ser. Sci. Math., 21 (1979), 717–721 | MR

[138] Dydak J., “On algebraic properties of continua, II”, Bull. Acad. Polon. Sci. Ser. Sci. Math., 21 (1979), 723–729 | MR

[139] Dydak J., “On internally movable compacta”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 27 (1979), 107–110 | MR | Zbl

[140] Dydak J., “On maps preserving $\mathrm{LC}^n$-divisors”, Bull. Acad. Polon. Sci. Ser. Sci. Math., 21 (1979), 889–893 | MR

[141] Dydak J., “The Whitehead and Smale theorems in shape theory”, Dissertationes Math. (Rozprawy Mat.), 156 (1979), 1–50 | MR

[142] Dydak J., “Pointed and unpointed shape and pro-homotopy”, Fund. Math., 107 (1980), 57–69 | DOI | MR | Zbl

[143] Dydak J., “Local $n$-connectivity of quotient spaces and one-point compactifications”, Shape Theory and Geometric Topology (Dubrovnik, Yugoslavia, 1981), Lect. Notes Math., 870, eds. S. Mardešić, J. Segal, Springer, Berlin, 1981, 48–72 | DOI | MR

[144] Dydak J., “Extension theory: The interface between set-theoretic and algebraic topology”, Topology Appl., 74 (1996), 225–258 | DOI | MR | Zbl

[145] Dydak J., Jimenez R., “Movability in the sense of $n$-shape”, Topology Its Appl., 146 (2005), 51–56 | DOI | MR | Zbl

[146] Dydak J., Nowak S., “Strong shape for topological spaces”, Trans. Amer. Math. Soc., 323 (1991), 765–796 | DOI | MR | Zbl

[147] Dydak J., Nowak S., Strok S., “On the union of two FANR-sets”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 24 (1976), 485–489 | MR | Zbl

[148] Dydak J., Segal J., Shape theory: An introduction, Lect. Notes Math., 688, Springer, Berlin, 1978 | DOI | MR | Zbl

[149] Eberhart C., Gordh G. R., Mack J., “The shape classification of torus-like and ($n$-sphere)-like continua”, General Topology Appl., 4 (1974), 85–94 | DOI | MR | Zbl

[150] Edwards D. A., “Etale homotopy theory and shape”, Algebraic and Geometrical Methods in Topology, Lect. Notes Math., 428, Springer, Berlin, 1974, 58–107 | DOI | MR

[151] Edwards D. A., Geoghegan R., “Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction”, Ann. Math., 101 (1975), 521–535 ; Correction: 104 (1976), 379 | DOI | MR | Zbl | DOI

[152] Edwards D. A., Geoghegan R., “The stability problem in shape, and a Whitehead theorem in pro-homotopy”, Trans. Amer. Math. Soc., 214 (1975), 261–277 | DOI | MR | Zbl

[153] Edwards D. A., Geoghegan R., “Compacta weak shape equivalent to ANR's”, Fund. Math., 90 (1976), 115–124 | DOI | MR | Zbl

[154] Edwards D. A., Geoghegan R., “Infinite-dimensional Whitehead and Vietoris theorems in shape and pro-homotopy”, Trans. Amer. Math. Soc., 219 (1976), 351–360 | DOI | MR | Zbl

[155] Edwards D. A., Geoghegan R. Stability theorems in shape and pro-homotopy, Trans. Amer. Math. Soc., 222 (1976), 389–403 | DOI | MR | Zbl

[156] Edwards D. A., Hastings H. M., Čech and Steenrod Homotopy Theories with Applications to Geometric Topology, Lect. Notes Math., 542, Springer, Berlin, 1976 | DOI | MR | Zbl

[157] Edwards D. A., Hastings H. M., “Čech theory, its past, present and future”, Rocky Mountain J. Math., 10 (1980), 429–468 | DOI | MR | Zbl

[158] Edwards D. A., McAuley P. T., “The shape of a map”, Fund. Math., 96 (1977), 195–210 | DOI | MR | Zbl

[159] Edwards R. D., “A theorem and a question related to cohomological dimension and cell-like maps”, Notices Amer. Math. Soc., 25 (1978), A-259–A-260 | MR

[160] Edwards R. D., “Characterizing infinite dimensional manifolds topologically (after Henryk Toruńczyk)”, Sém. Bourbaki (1978/79), Lect. Notes Math., 842, Springer, Berlin, 1979, talk no. 540, 278–302 | MR

[161] Edwards R. D., “The topology of manifolds and cell-like maps”, Proc. Int. Congress Math. (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, 111–127 | MR

[162] Edwards R. D., Kirby R. C., “Deformations of spaces of imbeddings”, Ann. Math., 93 (1971), 63–88 | DOI | MR | Zbl

[163] Ferry S., “A stable converse to the Vietoris-Smale theorem with applications to shape theory”, Trans. Amer. Math. Soc., 261 (1980), 369–386 | DOI | MR | Zbl

[164] Ferry S., “Homotopy, simple homotopy and compacta”, Topology, 19 (1980), 101–110 | DOI | MR | Zbl

[165] Ferry S., “Shape equivalence does not imply CE equivalence”, Proc. Amer. Math. Soc., 80 (1980), 154–156 | DOI | MR | Zbl

[166] Fischer H., Zastrow A., “Generalized universal covering spaces and the shape group”, Fund. Math., 197 (2007), 167–196 | DOI | MR | Zbl

[167] Flores A., “Über die Existenz $n$-dimensionaler Komplexe, die nicht in den $R_{2n}$ topologisch einbettbar sind”, Erg. Math. Kolloq., 5 (1932), 17–24

[168] Fox R. H., “On shape”, Fund. Math., 74 (1972), 47–71 | DOI | MR | Zbl

[169] Frei A., “On categorical shape theory”, Cahiers de topologie et géométrie différentielle catégoriques, 17 (1976), 261–294 | MR | Zbl

[170] Freudenthal H., “Entwicklungen von Räumen und ihren Gruppen”, Compositio Math., 4 (1937), 145–234 | MR

[171] Freyd P., “Splitting homotopy idempotents”, Proc. Conf. on Categorical Algebra (La Jolla, 1965), eds. S. Eilenberg, G. M. Kelley, Springer, Berlin, 1966, 173–176 | DOI | MR

[172] Freyd P., Heller A., “Splitting homotopy idempotents. II”, J. Pure Appl. Algebra, 89 (1993), 93–106 | DOI | MR | Zbl

[173] Gaszak A., “The Whitehead theorem in equivariant shape theory”, Glas. Mat., 234 (1989), 417–425 | MR

[174] Geoghegan R., “Elementary proofs of stability theorems in pro-homotopy and shape”, General Topology Appl., 8 (1978), 265–281 | DOI | MR | Zbl

[175] Geoghegan R., “The problem of pointed versus unpointed domination in shape theory”, Topology Proc., 3 (1978), 95–107 | MR

[176] Geoghegan R., “Open problems in infinite-dimensional topology”, Topology Proc., 4 (1979), 287–338 | MR

[177] Geoghegan R., “The shape of a group — connections between shape theory and the homology of groups”, Geometric Algebraic Topology, 18 (1986), 271–280 | MR | Zbl

[178] Geoghegan R., Krasinkiewicz J., “Empty components in strong shape theory”, Topology Its Appl., 41 (1991), 213–233 | DOI | MR | Zbl

[179] Geoghegan R., Lacher R. C., “Compacta with the shape of finite complexes”, Fund. Math., 92 (1976), 25–27 | DOI | MR | Zbl

[180] Geoghegan R., Summerhill R., “Infinite-dimensional methods in finite-dimensional geometric topology”, Bull. Amer. Math. Soc., 78 (1972), 1009–1014 | DOI | MR | Zbl

[181] Geoghegan R., Summerhill R., “Concerning the shapes of finite-dimensional compacta”, Trans. Amer. Math. Soc., 179 (1973), 281–292 | DOI | MR | Zbl

[182] Gevorgyan P. S., “Movable categories”, Glas. Mat., 38 (2003), 177–183 | DOI | MR | Zbl

[183] Gevorgyan P. S., “Some questions of equivariant movability”, Glas. Mat., 39 (2004), 185–198 | DOI | MR | Zbl

[184] Gevorgyan P. S., “Equivariant movability of topological groups”, Topology Its Appl., 159 (2012), 1761–1766 | DOI | MR | Zbl

[185] Gevorgyan P. S., “Yu. M. Smirnov's general equivariant shape theory”, Topology Its Appl., 160 (2013), 1232–1236 | DOI | MR | Zbl

[186] Gevorgyan P. S., Pop I., “Uniformly movable categories and uniform movability of topological spaces”, Bull. Polon. Acad. Sci. Math., 55 (2007), 229–242 | DOI | MR | Zbl

[187] Gevorgyan P. S., Pop I., “Movability and uniform movability of shape morphisms”, Bull. Polon. Acad. Sci. Math., 64 (2016), 69–83 | MR | Zbl

[188] Gevorgyan P. S., Pop I., “On the $n$-movability of maps”, Topology Its Appl., 221 (2017), 309–325 | DOI | MR | Zbl

[189] Gevorgyan P. S., Pop I., “Shape dimension of maps”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, 3–11 | MR | Zbl

[190] Gevorkian P. S., “An equivariant generalization of Arens–Ellis theorem”, J. Contemp. Math. Analysis, 31 (1996), 70–75 | MR | Zbl

[191] Ghanei F., Mirebrahimi H., Mashayekhy B., Nasri T., “Topological coarse shape homotopy groups”, Topology Its Appl., 219 (2017), 17–28 | DOI | MR | Zbl

[192] Giraldo A., Jiménez R., Morón M. A., Ruiz del Portal F. R., Sanjurjo J. M. R., “Pointed shape and global attractors for metrizable spaces”, Topology Its Appl., 158 (2011), 167–176 | DOI | MR | Zbl

[193] Godlewski S., “On the shape of solenoids”, Bull. Acad. Polon. Sci., 17 (1969), 623–627 | MR | Zbl

[194] Godlewski S., “Solenoids of comparable shapes are homeomorphic”, Bull. Acad. Polon. Sci., 18 (1970), 565–566 | MR | Zbl

[195] Godlewski S., “An example resolving some Borsuk's problems concerning shapes of metric spaces”, Bull. Acad. Polon. Sci., 23 (1975), 213 | MR

[196] Grothendieck A., “Technique de descente et théorèmes d'existence en géométrie algébrique. II”, Sém. Bourbaki, 12, 1959–60, 190–195 | MR

[197] Günther B., “Strong shape of compact Hausdorff spaces”, Topology Its Appl., 42 (1991), 165–174 | DOI | MR | Zbl

[198] Günther B., “The use of semisimplicial complexes in strong shape theory”, Glas. Mat., 27 (1992), 101–144 | MR | Zbl

[199] Günther B., “The Vietoris system in strong shape and strong homology”, Fund. Math., 141 (1992), 147–168 | DOI | MR | Zbl

[200] Günther B., Segal J., “Every attractor of a flow on a manifold has the shape of a finite polyhedron”, Proc. Amer. Math. Soc., 119 (1993), 321–329 | DOI | MR | Zbl

[201] Handel D., Segal J., “An acyclic continuum with non-movable suspensions”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 21 (1973), 171–172 | MR | Zbl

[202] Handel D., Segal J., “Finite shape classifications”, Quart. J. Math. Oxford Ser., 24 (1973), 37–45 | DOI | MR | Zbl

[203] Handel D., Segal J., “Shape classification of (projective $m$-space)-like continua”, General Topology Appl., 3 (1973), 111–119 | DOI | MR | Zbl

[204] Handel D., Segal J., “On shape classifications and invariants”, General Topology Appl., 4 (1974), 109–124 | DOI | MR | Zbl

[205] Hastings H. M., “Suspensions of strong shape eqUIvalences are CE equivalences”, Proc. Amer. Math. Soc., 87 (1983), 743–749 | DOI | MR

[206] Hastings H. M., Heller A., “Splitting homotopy idempotents”, Shape Theory and Geometric Topology (Dubrovnik, Yugoslavia, 1981), Lect. Notes Math., 870, eds. S. Mardešić, J. Segal, Springer, Berlin, 1981, 23–36 | DOI | MR

[207] Hastings H. M., Heller A., “Homotopy idempotents on finite-dimensional complexes split”, Proc. Amer. Math. Soc., 85 (1982), 619–622 | DOI | MR | Zbl

[208] Heller A., “On the representability of homotopy functors”, J. London Math. Soc., 23 (1981), 551–562 | DOI | MR

[209] Henderson D. W., “Applications of infinite-dimensional manifolds to quotient spaces of complete ANR's”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 19 (1971), 747–753 | MR | Zbl

[210] Hollingsworth J. G., Rushing T. B., “Embeddings of shape classes of compacta in the trivial range”, Pacific J. Math., 60 (1975), 103–110 | DOI | MR | Zbl

[211] Holsztyński W., “An extension and axiomatic characterization of the Borsuk's theory of shape”, Fund. Math., 70 (1971), 157–168 | DOI | MR | Zbl

[212] Husch L. S., Ivanšić I., “Shape domination and imbedding up to shape”, Compositio Math., 40 (1980), 153–166 | MR | Zbl

[213] Husch L. S., Ivanšić I., “Embedding compacta up to shape”, Shape Theory and Geometric Topology, Lect. Notes Math., 870, Springer, Berlin, 1981, 119–134 | DOI | MR

[214] Isbell J. R., “Embeddings of inverse limits”, Ann. Math., 70 (1959), 73–84 | DOI | MR | Zbl

[215] Ivanšić I., “Embedding compacta up to shape”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 25 (1977), 471–475 | MR | Zbl

[216] Ivanšić I., Rubin L. R., “Borsuk's index and pointed movability for projective movable continua”, Topology Its Appl., 94 (1999), 147–153 | DOI | MR | Zbl

[217] Ivanšić I., Sher R. B., Venema G. A., “Complement theorems beyond the trivial range”, Illinois J. Math., 25 (1981), 209–220 | DOI | MR | Zbl

[218] Iwamoto Y., Sakai K., “Strong $n$-shape theory”, Topology Its Appl., 122 (2002), 253–267 | DOI | MR | Zbl

[219] Kadlof A., “Remarks on Borsuk's problems concerning the operation of the addition of pointed shapes”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 24 (1976), 1001–1006 | MR

[220] Kadlof A., “An example resolving Borsuk's problem concerning the index $e(X)$”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 26 (1978), 905–907 | MR | Zbl

[221] Kahn D. S., “An example in Čech cohomology”, Proc. Amer. Math. Soc., 16 (1965), 584 | MR | Zbl

[222] Kato H., “Fiber shape categories”, Tsukuba J. Math., 5 (1981), 247–265 | DOI | MR | Zbl

[223] Kato H., “Shape properties of Whitney maps for hyperspaces”, Trans. Amer. Math. Soc., 297 (1986), 529–546 | DOI | MR | Zbl

[224] Keesling J. E., “Continuous functions induced by shape morphisms”, Proc. Amer. Math. Soc., 41 (1973), 315–320 | DOI | MR | Zbl

[225] Keesling J. E., “On the shape of torus-like continua and compact connected topological groups”, Proc. Amer. Math. Soc., 40 (1973), 297–302 | DOI | MR | Zbl

[226] Keesling J. E., “An algebraic property of Čech cohomology groups which prevents local connectivity and movability”, Trans. Amer. Math. Soc., 190 (1974), 151–162 | MR | Zbl

[227] Keesling J. E., “On movability and local connectivity”, Topology Conference (Virginia Polytechnic Inst. and State Univ., March 22–24, 1973), Lect. Notes Math., 375, eds. R. F. Dickman Jr., P. Fletcher, Springer, Berlin, 1974, 158–167 | DOI | MR

[228] Keesling J. E., “Products in the shape category and some applications”, Sym. Math. Istituto Nazionale di Alta Matematica 16 (Roma, 1973), New York, 1974, 133–142 | MR

[229] Keesling J. E., “Shape theory and compact connected abelian topological groups”, Trans. Amer. Math. Soc., 194 (1974), 349–358 | DOI | MR | Zbl

[230] Keesling J. E., “A non-movable trivial-shape decomposition of the Hilbert cube”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 23 (1975), 997–998 | MR | Zbl

[231] Keesling J. E., “The Čech cohomology of compact connected Abelian topological groups with application to shape theory”, Geometric Topology, Lect. Notes Math., 438, eds. Glaser L. C., Rushing T. B., Springer, Berlin, 1975, 325–331 | DOI | MR

[232] Keesling J. E., “On the Whitehead theorem in shape theory”, Fund. Math., 92 (1976), 247–253 | DOI | MR | Zbl

[233] Keesling J. E., “Some examples in shape theory using the theory of compact connected Abelian topological groups”, Trans. Amer. Math. Soc., 219 (1976), 169–188 | DOI | MR | Zbl

[234] Keesling J. E., “The Čech cohomology of movable and $n$-movable spaces”, Trans. Amer. Math. Soc., 219 (1976), 149–167 | MR | Zbl

[235] Keesling J. E., “Algebraic invariants in shape theory”, Topology Proc., 1 (1977), 115–124 | MR

[236] Keesling J. E., “The Stone–Čech compactification and shape dimension”, Topology Proc., 2 (1977), 483–508 | MR

[237] Keesling J. E., “Decompositions of the Stone–Čech compactification which are shape equivalences”, Pacific J. Math., 75 (1978), 455–466 | DOI | MR | Zbl

[238] Keesling J. E., “Shape theory and the Stone–Čech compactification”, Proc. Int. Conf. on Geom. Top. (Warszawa, 1978), Polish Sci. Publ., Warszawa, 1980, 235–240 | MR

[239] Keesling J. E., Wilson D. C., “Embedding $T^n$-like continua in Euclidean space”, Topology Appl., 21 (1985), 241–249 | DOI | MR | Zbl

[240] Klee V. L., “Convex bodies and periodic homeomorphisms in Hilbert space”, Trans. Amer. Math. Soc., 74 (1953), 10–43 | DOI | MR | Zbl

[241] Kodama Y., “Note on an absolute neighborhood extensor for metric spaces”, J. Math. Soc. Jap., 8 (1956), 206–215 | DOI | MR | Zbl

[242] Kodama Y., “On the shape of decomposition spaces”, J. Math. Soc. Jap., 26 (1974), 636–646 | DOI | MR | Zbl

[243] Kodama Y., “Fine movability”, J. Math. Soc. Jap., 30 (1978), 101–116 | DOI | MR | Zbl

[244] Kodama Y., Koyama A., “Hurewicz isomorphism theorem for Steenrod homology”, Proc. Amer. Math. Soc., 74 (1979), 363–367 | DOI | MR | Zbl

[245] Kodama Y., Ono J., “On fine shape theory”, Fund. Math., 105 (1979), 29–39 | DOI | MR | Zbl

[246] Kołodziejczyk D., “Simply-connected polyhedra dominate only finitely many different shapes”, Topology Its Appl., 112 (2001), 289–295 | DOI | MR

[247] Kołodziejczyk D., “A continuum with no prime shape factors”, Topology Its Appl., 156 (2009), 1002–1007 | DOI | MR

[248] Kołodziejczyk D., “On some problem of Borsuk concerning decompositions of shapes into prime factors”, Topology Its Appl., 201 (2016), 452–456 | DOI | MR

[249] Kołodziejczyk D., “Cartesian powers of shapes of FANR's and polyhedra”, Topology Its Appl., 232 (2017), 39–44 | DOI | MR

[250] Kozlowski G., Images of ANR's: Mimeographed notes, Univ. of Washington, Seattle, 1974

[251] Kozlowski G., “Maps of ANR's determined on null sequences of AR's”, Studies in Topology, eds. N. M. Stavrakas, K. R. Allen, Academic Press, New York, 1975, 277–284 | DOI | MR

[252] Kozlowski G., Segal J., “$n$-movable compacta and ANR-systems”, Fund. Math., 85 (1974), 235–243 | DOI | MR | Zbl

[253] Kozlowski G., Segal J., “On the shape of $0$-dimensional paracompacta”, Fund. Math., 83 (1974), 151–154 | DOI | MR | Zbl

[254] Kozlowski G., Segal J., “Movability and shape connectivity”, Fund. Math., 93 (1976), 145–154 | DOI | MR | Zbl

[255] Kozlowski G., Segal J., “Locally well-behaved paracompacta in shape theory”, Fund. Math., 95 (1977), 55–71 | DOI | MR | Zbl

[256] Kozlowski G., Segal J., “Local behavior and the Vietoris and Whitehead theorems in shape theory”, Fund. Math., 99 (1978), 213–225 | DOI | MR | Zbl

[257] Krasinkiewicz J., “Local connectedness and pointed $1$-movability”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 25 (1977), 1265–1269 | MR

[258] Krasinkiewicz J., “Continuous images of continua and $1$-movability”, Fund. Math., 98 (1978), 141–164 | DOI | MR | Zbl

[259] Krasinkiewicz J., Minc P., “Generalized paths and $1$-movability”, Fund. Math., 104 (1979), 141–153 | DOI | MR | Zbl

[260] Kuperberg K., “An isomorphism theorem of the Hurewicz-type in Borsuk's theory of shape”, Fund. Math., 77 (1972), 21–32 | DOI | MR | Zbl

[261] Kuperberg K., “A note on the Hurewicz isomorphism theorem in Borsuk's theory of shape”, Fund. Math., 90 (1976), 173–175 | DOI | MR | Zbl

[262] Kuperberg K., “Two Vietoris-type isomorphism theorems in Borsuk's theory of shape concerning the Vietoris–Čech homology and Borsuk's fundamental groups”, Studies in Topology, eds. N. M. Stavrakas, K. R. Allen, Academic Press, New York, 1975, 285–313 | DOI | MR

[263] Lacher R. C., “Cellularity criteria for maps”, Michigan Math. J., 17 (1970), 385–396 | DOI | MR | Zbl

[264] Lacher R. C., “Cell-like mapping and their generalizations”, Bull. Amer. Math. Soc., 83 (1977), 495–552 | DOI | MR | Zbl

[265] Lefschetz S., “On compact spaces”, Ann. Math., 32 (1931), 521–538 | DOI | MR

[266] Lefschetz S., Algebraic Topology, Amer. Math. Soc. Colloq. Publ., 27, New York, 1942 | MR | Zbl

[267] Lisica Ju. T., Mardesic S., “Steenrod–Sitnikov homology for arbitrary spaces”, Bull. Amer. Math. Soc., 9 (1983), 207–210 | DOI | MR | Zbl

[268] Lisica Ju. T., Mardesic S., “Coherent prohomotopy and strong shape theory”, Glas. Mat., 19 (1984), 335–399 | MR

[269] Lisica Ju.T., Mardesic S., “Strong homology of inverse systems of spaces. I”, Topology Its Appl., 19 (1985), 29–43 | DOI | MR | Zbl

[270] Lisica Ju.T., Mardesic S., “Strong homology of inverse systems of spaces. II”, Topology Appl., 19 (1985), 45–64 | DOI | MR | Zbl

[271] Mardešić S., “Retracts in shape theory”, Glas. Mat., 6 (1971), 153–163 | Zbl

[272] Mardešić S., “Shapes for topological spaces”, General Topology Appl., 3 (1973), 265–282 | DOI | MR | Zbl

[273] Mardešić S., “Strongly movable compacta and shape retracts”, Proc. Int. Symp. Topol. Appl. (Budva, 1972), Beograd, 1973, 163–166 | Zbl

[274] Mardešić S., “On the Whitehead theorem in shape theory. I”, Fund. Math., 91 (1976), 51–64 | DOI | MR | Zbl

[275] Mardešić S., “On the Whitehead theorem in shape theory. II”, Fund. Math., 91 (1976), 93–103 | DOI | MR | Zbl

[276] Mardešić S., “Approximate polyhedra, resolutions of maps and shape fibrations”, Fund. Math., 114 (1981), 53–78 | DOI | MR | Zbl

[277] Mardešić S., “Strong expansions and strong shape theory”, Topology Appl., 38 (1991), 275–291 | DOI | MR | Zbl

[278] Mardešić S., “Nonvanishing derived limits in shape theory”, Topology, 35 (1996), 521–532 | DOI | MR | Zbl

[279] Mardešić S., “Thirty years of shape theory”, Math. Commun., 2 (1997), 1–12 | MR | Zbl

[280] Mardešić S., “Absolute neighborhood retracts and shape theory”, History Topology, 9 (1999), 241–269

[281] Mardešić S., “Strong expansions of products and products in strong shape”, Topology Its Appl., 140 (2004), 81–110 | DOI | MR | Zbl

[282] Mardešić S., “The Cartesian product of a compactum and a space is a bifunctor in shape”, Topology Its Appl., 156 (2009), 2326–2345 | DOI | MR | Zbl

[283] Mardešić S., “Phantom mappings and a shape-theoretic problem concerning products”, Topology Its Appl., 178 (2014), 248–264 | DOI | MR | Zbl

[284] Mardešić S., Prasolov A. V., “On strong homology of compact spaces”, Topology Appl., 82 (1998), 327–354 | DOI | MR | Zbl

[285] Mardešić S., Rushing T. B., “Shape fibrations. I”, General Topology Appl., 9 (1978), 193–215 | DOI | MR | Zbl

[286] Mardešić S., Segal J., “Movable compacta and ANR-systems”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 18 (1970), 649–654 | MR | Zbl

[287] Mardešić S., Segal J., “Equivalence of Borsuk and the ANR-system approach to shapes”, Fund. Math., 72 (1971), 61–68 | DOI | MR | Zbl

[288] Mardešić S., Segal J., “Shapes of compacta and ANR-systems”, Fund Math., 72 (1971), 41–59 | DOI | MR | Zbl

[289] Mardešić S., Segal J., Shape Theory. The Inverse System Approach, North-Holland, Amsterdam, 1982 | MR | Zbl

[290] Mardešić S., Uglešić N., “A category whose isomorphisms induce an equivalence relation coarser than shape”, Topology Its Appl., 153 (2005), 448–463 | DOI | MR | Zbl

[291] Mardešić S., Ungar S., “The relative Hurewicz theorem in shape theory”, Glas. Mat., 9 (1974), 317–328 | MR | Zbl

[292] Mardešić S., Watanabe T., “Approximate resolutions of spaces and mappings”, Glas. Mat., 24 (1989), 587–637 | MR | Zbl

[293] Matumoto T., “Equivariant CW complexes and shape theory”, Tsukuba J. Math., 13 (1989), 157–164 | DOI | MR | Zbl

[294] Mazurkiewicz S., Sierpiński W., “Contribution à la topologie des ensembles dénombrables”, Fund. Math., 1 (1920), 17–27 | DOI | Zbl

[295] McCord M. C., “Universal $\mathcal{P}$-like compacta”, Michigan Math. J., 13 (1966), 71–87 | DOI | MR

[296] McCord M. C., “Embedding $\mathcal{P}$-like compacta in manifolds”, Canad. J. Math., 19 (1967), 321–332 | DOI | MR | Zbl

[297] McMillan D. R., “A criterion for cellularity in a manifold”, Ann. Math., 79 (1964), 327–337 | DOI | MR | Zbl

[298] McMillan D. R., “One dimensional shape properties and three-manifolds”, Studies in Topology, eds. N. M. Stavrakas, K. R. Allen, Academic Press, New York, 1975, 367–381 | DOI | MR

[299] Mihalik M. L., “Ends of fundamental groups in shape and proper homotopy”, Pacific J. Math., 90 (1980), 431–458 | DOI | MR | Zbl

[300] Mill van J., “A counterexample in ANR theory”, Topology Its Appl., 12 (1981), 315–320 | DOI | MR | Zbl

[301] Miller R. T., “Mapping cylinder neighborhoods of some ANR's”, Ann. Math., 103 (1976), 411–421 | DOI | MR

[302] Miminoshvili Z., “On a strong spectral shape theory”, Tr. Mat. Inst. Akad. Nauk Gruzin. SSR, 68 (1982), 79–102 | MR | Zbl

[303] Miyata T., “Uniform shape theory”, Glas. Mat., 29 (1994), 123–168 | MR | Zbl

[304] Miyata T., “Generalized stable shape and duality”, Topology Its Appl., 109 (2001), 75–88 | DOI | MR | Zbl

[305] Miyata T., Segal J., “Generalized stable shape and the Whitehead theorem”, Topology Its Appl., 63 (1995), 139–164 | DOI | MR | Zbl

[306] Morita K., “The Hurewicz and the Whitehead theorems in shape theory”, Sci. Rep. Tokyo Kyoiku Daigaku, 12 (1974), 246–258 | MR | Zbl

[307] Morita K., “Another form of the Whitehead theorem in shape theory”, Proc. Jap. Acad., 51 (1975), 394–398 | DOI | MR | Zbl

[308] Morita K., “Čech cohomology and covering dimension for topological spaces”, Fund. Math., 87 (1975), 31–52 | DOI | MR | Zbl

[309] Morita K., “On generalizations of Borsuk's homotopy extension theorem”, Fund. Math., 88 (1975), 1–6 | DOI | MR | Zbl

[310] Morita K., “On shapes of topological spaces”, Fund. Math., 86 (1975), 251–259 | DOI | MR | Zbl

[311] Morón M. A., Ruiz del Portal F. R., “On weak shape equivalences”, Topology Its Appl., 92 (1999), 225–236 | DOI | MR | Zbl

[312] Moszynska M., “Uniformly movable compact spaces and their algebraic properties”, Fund. Math., 77 (1972), 125–144 | DOI | MR | Zbl

[313] Moszynska M., “The Whitehead theorem in the theory of shapes”, Fund. Math., 80 (1973), 221–263 | DOI | MR | Zbl

[314] Mrozik P., “Chapman's complement theorem in shape theory: A version for the infinite poroduct of lines”, Arch. Math., 42 (1984), 564–567 | DOI | MR | Zbl

[315] Mrozik P., “Hereditary shape equivalences and complement theorems”, Topology Appl., 22 (1986), 61–65 | DOI | MR

[316] Nasri T., Ghanei F., Mashayekhy B., Mirebrahimi H., “On topological shape homotopy groups”, Topology Its Appl., 198 (2016), 22–33 | DOI | MR | Zbl

[317] Nowak S., “Some properties of fundamental dimension”, Fund. Math., 85 (1974), 211–227 | DOI | MR | Zbl

[318] Nowak S., “On the fundamental dimension of approximately $1$-connected compacta”, Fund. Math., 89 (1975), 61–79 | DOI | MR | Zbl

[319] Nowak S., “On the fundamental dimension of the Cartesian product of two compacta”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 24 (1976), 1021–1028 | MR

[320] Nowak S., “An example of finite dimensional movable continuum with an infinite family of shape factors”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 24 (1977), 1019–1020 | MR | Zbl

[321] Nowak S., “Remarks on some shape properties of the components of movable continua”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 27 (1979), 315–319 | MR | Zbl

[322] Nowak S., “Some remarks concerning the fundamental dimension of the Cartesian product of two compacta”, Fund. Math., 103 (1979), 31–41 | DOI | MR | Zbl

[323] Nowak S., “Algebraic theory of the fundamental dimension”, Disser. Math., 187 (1981), 1–59 | MR

[324] Nowak S., “On the relationship between shape properties of subcompacta of $S^n$ and homotopy properties of their complements”, Fund. Math., 128 (1987), 47–60 | DOI | MR | Zbl

[325] Pavel M., “Shape theory and pattern recognition”, Pattern Recognition, 16 (1983), 349–356 | DOI | MR | Zbl

[326] Peterson P., “Some non-embedding problems”, Bol. Soc. Mat. Mexicana, 2 (1957), 9–15 | MR | Zbl

[327] Poincaré H., “Analysis situs”, J. École Polytech., 2 (1895), 1–121

[328] Poincaré H., “Complément à l'analysis situs”, Rend. Circ. Mat. Palermo, 13 (1899), 285–343 | DOI | MR | Zbl

[329] Pontryagin L., “The theory of topological commutative groups”, Ann. Math., 35 (1934), 361–388 | DOI | MR | Zbl

[330] Pop I., “An equivariant shape theory”, Ann. Ştiint. Univ. Al. I. Cuza Iaşi Sect. I Mat., 30 (1984), 53–67 | MR | Zbl

[331] Pop I., “A categorical notion of movability”, Anal. Sci. Univ. Al. I. Cuza, 49 (2003), 327–341 | MR | Zbl

[332] Porter T., “A Čech-Hurewicz isomorphism theorem for movable metric compacts”, Math. Scand., 33 (1973), 90–96 | DOI | MR | Zbl

[333] Porter T., “Čech homotopy. I”, J. London Math. Soc., 6 (1973), 429–436 | DOI | MR | Zbl

[334] Porter T., “Generalised shape theory”, Proc. Roy. Irish Acad., 74 (1974), 33–48 | MR | Zbl

[335] Porter T., “Stability results for topological spaces”, Math. Z., 140 (1974), 1–21 | DOI | MR | Zbl

[336] Porter T., “Stability of algebraic inverse systems. II”, J. Pure Appl. Algebra, 7 (1976), 133–143 | DOI | MR | Zbl

[337] Porter T., “Stability of algebraic inverse systems. I”, Fund. Math., 100 (1978), 17–33 | DOI | MR | Zbl

[338] Porter T., “Proper homotopy theory”, Handbook of Algebraic Topology, ed. I. M. James, Elsevier, Amsterdam, 1995, 127–167 | DOI | MR

[339] Prasolov A. V., “On the universal coefficients formula for shape homology”, Topology Its Appl., 160 (2013), 1918–1956 | DOI | MR | Zbl

[340] Quigley J., Shape theory, approaching theory and a Hurewicz theorem, Doct. Diss., Ind. Univ., 1970 | MR

[341] Quigley J., “An exact sequence from the $n$-th to $(n-1)$-st fundamental group”, Fund. Math., 77 (1973), 195–210 | DOI | MR | Zbl

[342] Raussen M., “Hurewicz isomorphism and Whitehead theorem in pro-categories”, Arch. Math., 30 (1978), 153–164 | DOI | MR | Zbl

[343] Rubin L. R., “Cell-like maps, dimension and cohomological dimension: a survey”, Banach Center Publ., 18, 1986, 371–376 | DOI | MR | Zbl

[344] Rudin M. E., “A normal space $X$ for which $X \times I$ is not normal”, Fund. Math., 73 (1971), 179–186 | DOI | MR | Zbl

[345] Sanjurjo J., “On limits of shape maps”, Topology Its Appl., 23 (1986), 173–181 | DOI | MR | Zbl

[346] Sanjurjo J., “On the shape category of compacta”, J. London Math. Soc., 2 (1986), 559–567 | DOI | MR

[347] Sanjurjo J., “A non-continuous description of the shape category of compacta”, Quart. J. Math., 40 (1989), 351–359 | DOI | MR | Zbl

[348] Sanjurjo J., “An intrinsic description of shape”, Trans. Amer. Math. Soc., 329 (1992), 625–636 | DOI | MR | Zbl

[349] Sanjurjo J., “Multihomotopy, Čech spaces of loops and shape groups”, Proc. London Math. Soc., 3 (1994), 330–344 | DOI | MR | Zbl

[350] Sanjurjo J., “On the structure of uniform attractors”, J. Math. Anal. Appl., 152 (1995), 519–528 | DOI | MR

[351] Segal J., “Shape classification of projective plane-like continua”, Glas. Mat. Ser. III, 6 (1971), 365–371 | MR | Zbl

[352] Segal J., “On the shape classification of manifold-like continua”, General Topology and Its Relations to Modern Analysis and Algebra III, Proc. Third Prague Topological Symp. (Prague, 1971), ed. J. Novák, Academia, Prague, 1972, 389–391

[353] Segal J., “Shape classifications”, Proc. of Int. Symp. on Topology and Its Applications (Budva, 25–31, 8, 1972), Savez Društ. Mat. Fiz. Astronom. Jugoslav., Yugoslavia, Beograd, 1973, 225–228 | MR

[354] Segal J., “Movable shapes”, Topology Conf. (Blackburg, VA, USA, 1973), Lect. Notes Math., 375, Springer, Berlin, 1974, 236–241 | DOI | MR

[355] Segal J., “Movable continua and shape retracts”, Studies in Topology, Academic Press, New York, 1975, 539–544 | DOI | MR

[356] Segal J., “Local behavior in shape theory”, Gen. Topol. Relat. Modern Anal. Algebra. IV, Proc. 4-th Prague Topol. Symp., v. B, Prague, 1976, 413–419 | MR

[357] Segal J., “An introduction to shape theory”, Alg. Top. Conf. (Vancouver, 1977), Lect. Notes Math., 673, Springer, Berlin, 1978, 225–242 | DOI | MR

[358] Segal J., Spież S., Günther B., “Strong shape of uniform spaces”, Topology Appl., 49 (1993), 237–249 | DOI | MR | Zbl

[359] Segal J., Watanabe T., “Cosmic approximate limits and fixed points”, Trans. Amer. Math. Soc., 333 (1992), 1–61 | DOI | MR | Zbl

[360] Šekutkovski N., “Category of coherent inverse systems”, Glas. Mat., 23 (1988), 373–396 | MR

[361] Šekutkovski N., Markoski G., “Proper shape over finite coverings”, Topology Its Appl., 158 (2011), 2016–2021 | DOI | MR

[362] Sher R. B., “Realizing cell-like maps in Euclidean space”, General Topology Appl., 2 (1972), 75–89 | DOI | MR | Zbl

[363] Sher R. B., “Complement theorems in shape theory”, Shape Theory and Geometric Topology (Dubrovnik, Yugoslavia, 1981), Lect. Notes Math., 870, eds. S. Mardešić, J. Segal, Springer, Berlin, 1981, 150–168 | DOI | MR

[364] Sher R. B., “Complement theorems in shape theory. II”, Geometric Topology and Shape Theory, Lect. Notes Math., 1283, Springer, Berlin, 1987, 212–220 | DOI | MR

[365] Siebenmann L. C., “Approximating cellular maps by homeomorphisms”, Topology, 11 (1972), 271–294 | DOI | MR | Zbl

[366] Siebenmann L. C., “Chapman's classification of shapes, a proof using collapsing”, Manuscripta Math., 16 (1975), 373–384 | DOI | MR | Zbl

[367] Spież S., “A majorant for the family of all movable shapes”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 21 (1973), 615–620 | MR | Zbl

[368] Spież S., “Movablllty and uniform movability”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 22 (1974), 43–45 | MR | Zbl

[369] Spież S., “An example of a continuum $X$ with $\mathrm{Fd}(X \times S^1) = \mathrm{Fd}(X) = 2$”, Bull. Acad. Polon. Sci. Ser. Sci. Math., 27 (1979), 923–927 | MR | Zbl

[370] Spież S., “On the fundamental dimension of the cartesian product of compacta with fundamental dimension 2”, Fund. Math., 116 (1983), 17–32 | DOI | MR | Zbl

[371] Stallings J., The embedding of homotopy types into manifolds, Mimeographed notes, Princeton Univ., 1965

[372] Stramaccia L., “On the definition of the strong shape category”, Glas. Mat., 32 (1997), 141–152 | MR

[373] Stramaccia L., “Characterizing shape theories by Kan extensions”, Topology Its Appl., 120 (2002), 355–363 | DOI | MR | Zbl

[374] Stramaccia L., “Shape and strong shape equivalences”, Cahiers de topologie et géométrie différentielle catégoriques, 43 (2002), 242–256 | MR | Zbl

[375] Stramaccia L., “$P$-embeddings, AR and ANR spaces”, Homology, Homotopy Appl., 5 (2003), 213–218 | DOI | MR | Zbl

[376] Stramaccia L., “Groupoids and strong shape”, Topology Its Appl., 153 (2005), 528–539 | DOI | MR | Zbl

[377] Stramaccia L., “$2$-categorical aspects of strong shape”, Topology Its Appl., 153 (2006), 3007–3018 | DOI | MR | Zbl

[378] Taylor J. L., “A counterexample in shape theory”, Bull. Amer. Math. Soc., 81 (1975), 629–632 | DOI | MR | Zbl

[379] Toda H., “On unstable homotopy of spheres and classical groups”, Proc. Nat. Acad. Sci., 46 (1960), 1102–1105 | DOI | MR | Zbl

[380] Toda H., Composition Methods in Homotopy Groups of Spheres, Princeton Univ. Press, Princeton, 1962 | MR | Zbl

[381] Toruńczyk H., “Compact absolute retracts as factors of the Hilbert space”, Fund. Math., 83 (1973), 75–84 | DOI | MR | Zbl

[382] Toruńczyk H., “On $CE$-images of the Hilbert cube and characterization of $Q$-manifolds”, Fund. Math., 106 (1980), 31–40 | DOI | MR | Zbl

[383] Toruńczyk H., “Characterizing Hilbert space topology”, Fund. Math., 111 (1981), 247–262 | DOI | MR | Zbl

[384] Trybulec A., “On shapes of movable curves”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 21 (1973), 727–733 | MR | Zbl

[385] Ungar Š., “$n$-connectedness of inverse systems and applications to shape theory”, Glas. Mat., 13 (1978), 371–398 | MR

[386] Ungar Š., “Shape bundles”, Topology Its Appl., 12 (1981), 89–99 | DOI | MR | Zbl

[387] Veblen O., Analysis Situs, Colloq. Lect. Amer. Math. Soc., 5, Amer. Math. Soc., New York, 1922 | MR | Zbl

[388] Venema G. A., “Embeddings of compacta with shape dimension in the trivial range”, Proc. Amer. Math. Soc., 55 (1976), 443–448 | DOI | MR | Zbl

[389] Venema G. A., “Embeddings in shape theory”, Shape Theory and Geometric Topology (Dubrovnik, Yugoslavia, 1981), Lect. Notes Math., 870, eds. S. Mardešić, J. Segal, Springer, Berlin, 1981, 169–185 | DOI | MR

[390] Venema G. A., “An approximation theorem in shape theory”, Topology Its Appl., 14 (1982), 111–116 | DOI | MR | Zbl

[391] Vietoris L., “Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen”, Math. Ann., 97 (1927), 454–72 | DOI | MR

[392] Vogt R. M., “Homotopy limits and colimits”, Math. Z., 134 (1973), 11–52 | DOI | MR | Zbl

[393] Wall C. T. C., “Finiteness conditions for CW-complexes”, Ann. Math., 81 (1965), 56–69 | DOI | MR | Zbl

[394] Walsh J. J., “Dimension, cohomological dimension, and cell-like mappings”, Shape Theory and Geometric Topology (Dubrovnik, Yugoslavia, 1981), Lect. Notes Math., 870, eds. S. Mardešić, J. Segal, Springer, Berlin, 1981, 105–118 | DOI | MR

[395] Walsh J. J., “Characterization of Hilbert cube manifolds: an alternate proof”, Banach Center Publ., 18, 1986, 153–160 | DOI | MR | Zbl

[396] Watanabe T., “Shape classifications for complex projective space-like and wedges of $n$-spheres-like continua”, Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A, 12 (1974), 233–245 | MR | Zbl

[397] Watanabe T., “A note on the Hurewicz theorem in shape theory”, Proc. Amer. Math. Soc., 61 (1976), 137–140 | DOI | MR

[398] Watanabe T., “On the characterization of uniform movability for compact connected Abelian groups”, Glas. Mat., 11 (1976), 347–354 | MR | Zbl

[399] Watanabe T., “On a problem of Y. Kodama”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 25 (1977), 981–985 | MR | Zbl

[400] Watanabe T., “On Čech homology and a stability theorem in shape theory”, J. Math. Soc. Jap., 29 (1977), 655–664 | DOI | MR | Zbl

[401] Watanabe T., “On strong movability”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 25 (1977), 813–816 | MR | Zbl

[402] Watanabe T., “On spaces which have the shape of compact metric spaces”, Fund. Math., 104 (1979), 1–11 | DOI | MR | Zbl

[403] Watanabe T., “Approximative shape. I”, Tsukuba J. Math., 11 (1987), 17–59 | DOI | MR | Zbl

[404] Watanabe T., “Some relations between shape density and shape length”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 25 (1977), 1133–1139 | MR

[405] Watanabe T., “Some strange examples of shape fibrations”, Topology Its Appl., 60 (1994), 23–32 | DOI | MR | Zbl

[406] West J. E., “Mapping cylinders of Hilbert cube factors”, General Topology Its Appl., 1 (1971), 111–125 | DOI | MR | Zbl

[407] West J. E., “Compact ANR's have finite type”, Bull. Amer. Math. Soc., 81 (1975), 163–165 | DOI | MR | Zbl

[408] West J. E., “Mapping Hilbert cube manifolds to ANR's: a solution of a conjecture of Borsuk”, Ann. Math., 106 (1977), 1–18 | DOI | MR | Zbl

[409] West J. E., “Open problems in infinite dimensional topology”, Open Problems in Topology, eds. J. van Mill, G. M. Reed, North-Holland, Amsterdam, 1990, 523–597 | MR

[410] Whitehead J. H. C., “Note on a theorem due to Borsuk”, Bull. Amer. Math. Soc., 54 (1948), 1125–1132 | DOI | MR | Zbl

[411] Whitehead J. H. C., “On the homotopy type of ANR's”, Bull. Amer. Math. Soc., 54 (1948), 1133–1145 | DOI | MR | Zbl

[412] Whitehead J. H. C., “Combinatorial homotopy. I”, Bull. Amer. Math. Soc., 55 (1949), 213–245 | DOI | MR | Zbl

[413] Whitney H., “Differentiable manifolds”, Ann. Math., 37 (1936), 645–680 | DOI | MR

[414] Winslow A. B., “There are $2^c$ nonhomeomorphic continua in $\beta \mathbf{R}^n\setminus \mathbf{R}^n$”, Pacific J. Math., 84 (1979), 233–239 | DOI | MR | Zbl

[415] Wong B. Y. T., “Extending homeomorphisms by means of collarings”, Proc. Amer. Math. Soc., 19 (1968), 1443–1447 | DOI | MR | Zbl

[416] Yagasaki T., “Fiber shape theory”, Tsukuba J. Math., 9 (1985), 261–277 | DOI | MR | Zbl

[417] Yagasaki T., “Movability of maps and shape fibrations”, Glas. Mat., 21 (1986), 153–177 | MR | Zbl