Jordan--Kronecker invariants of semidirect sums of the form $\mathrm{sl}(n)+(\mathbb R^{n})^k$ and $\mathrm{gl}(n)+(\mathbb R^{n})^k$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 3-18
Voir la notice de l'article provenant de la source Math-Net.Ru
We calculate Jordan–Kronecker invariants for semidirect sums of Lie algebras $\mathrm{sl}(n)$ and $\mathrm{gl}(n)$ with $k$ copies of $\mathbb R^n$ with respect to their standard representation for cases where $k>n$ or $n$ is a multiple of $k$.
@article{FPM_2019_22_6_a0,
author = {K. S. Vorushilov},
title = {Jordan--Kronecker invariants of semidirect sums of the form $\mathrm{sl}(n)+(\mathbb R^{n})^k$ and $\mathrm{gl}(n)+(\mathbb R^{n})^k$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--18},
publisher = {mathdoc},
volume = {22},
number = {6},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a0/}
}
TY - JOUR
AU - K. S. Vorushilov
TI - Jordan--Kronecker invariants of semidirect sums of the form $\mathrm{sl}(n)+(\mathbb R^{n})^k$ and $\mathrm{gl}(n)+(\mathbb R^{n})^k$
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 2019
SP - 3
EP - 18
VL - 22
IS - 6
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a0/
LA - ru
ID - FPM_2019_22_6_a0
ER -
%0 Journal Article
%A K. S. Vorushilov
%T Jordan--Kronecker invariants of semidirect sums of the form $\mathrm{sl}(n)+(\mathbb R^{n})^k$ and $\mathrm{gl}(n)+(\mathbb R^{n})^k$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 3-18
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a0/
%G ru
%F FPM_2019_22_6_a0
K. S. Vorushilov. Jordan--Kronecker invariants of semidirect sums of the form $\mathrm{sl}(n)+(\mathbb R^{n})^k$ and $\mathrm{gl}(n)+(\mathbb R^{n})^k$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 3-18. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a0/