Jordan--Kronecker invariants of semidirect sums of the form $\mathrm{sl}(n)+(\mathbb R^{n})^k$ and $\mathrm{gl}(n)+(\mathbb R^{n})^k$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate Jordan–Kronecker invariants for semidirect sums of Lie algebras $\mathrm{sl}(n)$ and $\mathrm{gl}(n)$ with $k$ copies of $\mathbb R^n$ with respect to their standard representation for cases where $k>n$ or $n$ is a multiple of $k$.
@article{FPM_2019_22_6_a0,
     author = {K. S. Vorushilov},
     title = {Jordan--Kronecker invariants of semidirect sums of the form $\mathrm{sl}(n)+(\mathbb R^{n})^k$ and $\mathrm{gl}(n)+(\mathbb R^{n})^k$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a0/}
}
TY  - JOUR
AU  - K. S. Vorushilov
TI  - Jordan--Kronecker invariants of semidirect sums of the form $\mathrm{sl}(n)+(\mathbb R^{n})^k$ and $\mathrm{gl}(n)+(\mathbb R^{n})^k$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 3
EP  - 18
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a0/
LA  - ru
ID  - FPM_2019_22_6_a0
ER  - 
%0 Journal Article
%A K. S. Vorushilov
%T Jordan--Kronecker invariants of semidirect sums of the form $\mathrm{sl}(n)+(\mathbb R^{n})^k$ and $\mathrm{gl}(n)+(\mathbb R^{n})^k$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 3-18
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a0/
%G ru
%F FPM_2019_22_6_a0
K. S. Vorushilov. Jordan--Kronecker invariants of semidirect sums of the form $\mathrm{sl}(n)+(\mathbb R^{n})^k$ and $\mathrm{gl}(n)+(\mathbb R^{n})^k$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 3-18. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a0/

[1] Bolsinov A. V., Integriruemye po Liuvillyu gamiltonovy sistemy na algebrakh Li, Dis.\ldots kand. fiz.-mat. nauk, MGU im. M. V. Lomonosova, 1987

[2] Bolsinov A. V., Izosimov A. M., Konyaev A. Yu., Oshemkov A. A., “Algebra i topologiya integriruemykh sistem. Zadachi dlya issledovaniya”, Tr. semin. po vektor. i tenzor. analizu, 28, 2012, 119–191

[3] Vorontsov A. C., “Invarianty algebr Li, predstavimykh v vide polupryamoi summy s kommutativnym idealom”, Matem. sb., 200:8 (2009), 45–62 | DOI | Zbl

[4] Vorontsov A. C., “Kronekerovy indeksy algebry Li i otsenka stepenei invariantov”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 66:1 (2011), 26–30 | MR | Zbl

[5] Guseinov A., Invarianty koprisoedinennogo predstavleniya algebr Li $\mathrm{so}(n)+_\phi\allowbreak+_\phi(\mathbb{R}^n)^k$, $\mathrm{sp}(n)+_\phi(\mathbb{R}^n)^k$, $\mathrm{gl}(n)+_\phi(\mathbb{R}^n)^k$, Diplom. rabota, MGU im. M. V. Lomonosova, 2006

[6] Mischenko A. S., Fomenko A. T., “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR, 42:2 (1978), 396–415 | MR

[7] Bolsinov A. V., Zhang P., “Jordan–Kronecker invariants of finite-dimensional Lie algebras”, Transform. Groups, 21:1 (2016), 51–86 | DOI | MR | Zbl

[8] Bolsinov A., Izosimov A., Tsonev D., “Finite-dimensional integrable systems: A collection of research problems”, J. Geom. Phys., 2016 | DOI | MR

[9] Raïs M., “L'indice des produits semi-directs $\smash[b]{E \underset {\rho}{\times} \mathfrak{G}}$”, C. R. Acad. Sci. Paris Sér. A, 287:4 (1978), 195–197 | MR | Zbl

[10] Rosemann S., Schöbel K., “Open problems in the theory of finite-dimensional integrable systems and related fields”, J. Geom. Phys., 87 (2015), 396–414 | DOI | MR | Zbl

[11] Thompson R., “Pencils of complex and real symmetric and skew matrices”, Linear Algebra Appl., 147 (1991), 323–371 | DOI | MR | Zbl

[12] Vorushilov K., “Jordan–Kronecker invariants for semidirect sums defined by standard representation of orthogonal or symplectic Lie algebras”, Lob. J. Math., 38:6 (2017), 1121–1130 | MR | Zbl