Absolute ideals of algebraically compact Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 91-114
Voir la notice de l'article provenant de la source Math-Net.Ru
An absolute ideal of an Abelian group $G$ is a subgroup that is an ideal in every ring whose additive group coincides with $G$. We describe reduced algebraically compact Abelian groups $G$ that admit at least one ring structure $R$ such that every ideal of $R$ is an absolute ideal of $G$ (Problem 93 in L. Fuchs' book “Infinite Abelian Groups”). Reduced, algebraically compact, Abelian groups that have only fully invariant subgroups as absolute ideal are characterized.
@article{FPM_2019_22_5_a9,
author = {E. I. Kompantseva and Pham Thi Thu Thuy},
title = {Absolute ideals of algebraically compact {Abelian} groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {91--114},
publisher = {mathdoc},
volume = {22},
number = {5},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a9/}
}
TY - JOUR AU - E. I. Kompantseva AU - Pham Thi Thu Thuy TI - Absolute ideals of algebraically compact Abelian groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2019 SP - 91 EP - 114 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a9/ LA - ru ID - FPM_2019_22_5_a9 ER -
E. I. Kompantseva; Pham Thi Thu Thuy. Absolute ideals of algebraically compact Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 91-114. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a9/