Absolute ideals of algebraically compact Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 91-114

Voir la notice de l'article provenant de la source Math-Net.Ru

An absolute ideal of an Abelian group $G$ is a subgroup that is an ideal in every ring whose additive group coincides with $G$. We describe reduced algebraically compact Abelian groups $G$ that admit at least one ring structure $R$ such that every ideal of $R$ is an absolute ideal of $G$ (Problem 93 in L. Fuchs' book “Infinite Abelian Groups”). Reduced, algebraically compact, Abelian groups that have only fully invariant subgroups as absolute ideal are characterized.
@article{FPM_2019_22_5_a9,
     author = {E. I. Kompantseva and Pham Thi Thu Thuy},
     title = {Absolute ideals of algebraically compact {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {91--114},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a9/}
}
TY  - JOUR
AU  - E. I. Kompantseva
AU  - Pham Thi Thu Thuy
TI  - Absolute ideals of algebraically compact Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 91
EP  - 114
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a9/
LA  - ru
ID  - FPM_2019_22_5_a9
ER  - 
%0 Journal Article
%A E. I. Kompantseva
%A Pham Thi Thu Thuy
%T Absolute ideals of algebraically compact Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 91-114
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a9/
%G ru
%F FPM_2019_22_5_a9
E. I. Kompantseva; Pham Thi Thu Thuy. Absolute ideals of algebraically compact Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 91-114. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a9/