Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2019_22_5_a9, author = {E. I. Kompantseva and Pham Thi Thu Thuy}, title = {Absolute ideals of algebraically compact {Abelian} groups}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {91--114}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a9/} }
TY - JOUR AU - E. I. Kompantseva AU - Pham Thi Thu Thuy TI - Absolute ideals of algebraically compact Abelian groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2019 SP - 91 EP - 114 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a9/ LA - ru ID - FPM_2019_22_5_a9 ER -
E. I. Kompantseva; Pham Thi Thu Thuy. Absolute ideals of algebraically compact Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 91-114. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a9/
[1] Kulikov L. Ya., “Obobschennye primarnye gruppy. 1; 2”, Tr. MMO, 1, 1952, 247–326 ; Тр. ММО, 2, 1953, 85–167 | Zbl
[2] Aghdam A. M., Karimi F., Najafizadeh A., “On the subgroups of torion-free groups which are subrings in every ring”, Ital. J. Pure Appl. Math., 31 (2013), 63–76 | MR | Zbl
[3] Andruszkiewicz R. R., Woronowicz M., “On associative ring multiplication on Abelian mixed-groups”, Commun. Algebra, 42:9 (2014), 3760–3767 | DOI | MR | Zbl
[4] Andruszkiewicz R. R., Woronowicz M., “Some new results for the square subgroup of an Abelian group”, Commun. Algebra, 44:2 (2016), 2351–2361 | DOI | MR | Zbl
[5] Beaumont R. A., “Rings with additive group which is the direct sum of cyclic groups”, Duke Math. J., 15 (1948), 367–369 | DOI | MR | Zbl
[6] Beaumont R. A., Pierce R. S., “Torsion free rings”, Illinois J. Math., 5 (1961), 61–98 | DOI | MR | Zbl
[7] Czele T., “Zur Theorie der Zeroringe”, Math. Ann., 121 (1949), 242–246 | DOI | MR
[8] Feigelstock S., “The additive groups of self-injective rings”, Soochow J. Math., 33:4 (2007), 641–645 | MR | Zbl
[9] Fried E., “On the subgroups of Abelian groups that are ideals in every ring”, Proc. Colloq. Abelian Groups, Budapest, 1964, 51–55 | MR | Zbl
[10] Fuchs L., Infinite Abelian Groups, v. 1, 2, Academic Press, London, 1973 | MR | Zbl
[11] Kuratowski K., Mostowski A., Set Theory, North-Holland, Amsterdam, 1976 | MR | Zbl
[12] Jacobson N., Structure of Rings Providence, Amer. Math. Soc., 1956 | MR
[13] Kompantseva E. I., “Torsion free rings”, J. Math. Sci., 171:2 (2010), 213–247 | DOI | MR | Zbl
[14] McLean K. R., “The additive ideals of a $p$-ring”, J. London Math. Soc., 2 (1975), 523–529 | DOI | MR
[15] Wickless W. J., “Abelian group which admit only nilpotent multiplications”, Pacific J. Math., 40:1 (1972), 251–259 | DOI | MR | Zbl