Absolute ideals of algebraically compact Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 91-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

An absolute ideal of an Abelian group $G$ is a subgroup that is an ideal in every ring whose additive group coincides with $G$. We describe reduced algebraically compact Abelian groups $G$ that admit at least one ring structure $R$ such that every ideal of $R$ is an absolute ideal of $G$ (Problem 93 in L. Fuchs' book “Infinite Abelian Groups”). Reduced, algebraically compact, Abelian groups that have only fully invariant subgroups as absolute ideal are characterized.
@article{FPM_2019_22_5_a9,
     author = {E. I. Kompantseva and Pham Thi Thu Thuy},
     title = {Absolute ideals of algebraically compact {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {91--114},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a9/}
}
TY  - JOUR
AU  - E. I. Kompantseva
AU  - Pham Thi Thu Thuy
TI  - Absolute ideals of algebraically compact Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 91
EP  - 114
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a9/
LA  - ru
ID  - FPM_2019_22_5_a9
ER  - 
%0 Journal Article
%A E. I. Kompantseva
%A Pham Thi Thu Thuy
%T Absolute ideals of algebraically compact Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 91-114
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a9/
%G ru
%F FPM_2019_22_5_a9
E. I. Kompantseva; Pham Thi Thu Thuy. Absolute ideals of algebraically compact Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 91-114. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a9/

[1] Kulikov L. Ya., “Obobschennye primarnye gruppy. 1; 2”, Tr. MMO, 1, 1952, 247–326 ; Тр. ММО, 2, 1953, 85–167 | Zbl

[2] Aghdam A. M., Karimi F., Najafizadeh A., “On the subgroups of torion-free groups which are subrings in every ring”, Ital. J. Pure Appl. Math., 31 (2013), 63–76 | MR | Zbl

[3] Andruszkiewicz R. R., Woronowicz M., “On associative ring multiplication on Abelian mixed-groups”, Commun. Algebra, 42:9 (2014), 3760–3767 | DOI | MR | Zbl

[4] Andruszkiewicz R. R., Woronowicz M., “Some new results for the square subgroup of an Abelian group”, Commun. Algebra, 44:2 (2016), 2351–2361 | DOI | MR | Zbl

[5] Beaumont R. A., “Rings with additive group which is the direct sum of cyclic groups”, Duke Math. J., 15 (1948), 367–369 | DOI | MR | Zbl

[6] Beaumont R. A., Pierce R. S., “Torsion free rings”, Illinois J. Math., 5 (1961), 61–98 | DOI | MR | Zbl

[7] Czele T., “Zur Theorie der Zeroringe”, Math. Ann., 121 (1949), 242–246 | DOI | MR

[8] Feigelstock S., “The additive groups of self-injective rings”, Soochow J. Math., 33:4 (2007), 641–645 | MR | Zbl

[9] Fried E., “On the subgroups of Abelian groups that are ideals in every ring”, Proc. Colloq. Abelian Groups, Budapest, 1964, 51–55 | MR | Zbl

[10] Fuchs L., Infinite Abelian Groups, v. 1, 2, Academic Press, London, 1973 | MR | Zbl

[11] Kuratowski K., Mostowski A., Set Theory, North-Holland, Amsterdam, 1976 | MR | Zbl

[12] Jacobson N., Structure of Rings Providence, Amer. Math. Soc., 1956 | MR

[13] Kompantseva E. I., “Torsion free rings”, J. Math. Sci., 171:2 (2010), 213–247 | DOI | MR | Zbl

[14] McLean K. R., “The additive ideals of a $p$-ring”, J. London Math. Soc., 2 (1975), 523–529 | DOI | MR

[15] Wickless W. J., “Abelian group which admit only nilpotent multiplications”, Pacific J. Math., 40:1 (1972), 251–259 | DOI | MR | Zbl