A~bound for a~typical differential dimension
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 259-269.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove upper and lower bounds for the leading coefficient of Kolchin dimension polynomial of systems of partial linear differential equations in the case of codimension two, quadratic with respect to the orders of the equations in the system. A notion of typical differential dimension plays an important role in differential algebra, some of its estimations were proved by J. Ritt and E. Kolchin; they also advanced several conjectures that were later refuted. Our bound generalizes the analogue of the Bézout theorem for one differential indeterminate. It is better than an estimation proved by D. Grigoriev.
@article{FPM_2019_22_5_a22,
     author = {M. V. Kondratieva},
     title = {A~bound for a~typical differential dimension},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {259--269},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a22/}
}
TY  - JOUR
AU  - M. V. Kondratieva
TI  - A~bound for a~typical differential dimension
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 259
EP  - 269
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a22/
LA  - ru
ID  - FPM_2019_22_5_a22
ER  - 
%0 Journal Article
%A M. V. Kondratieva
%T A~bound for a~typical differential dimension
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 259-269
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a22/
%G ru
%F FPM_2019_22_5_a22
M. V. Kondratieva. A~bound for a~typical differential dimension. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 259-269. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a22/

[1] Boulier F., Lazard D., Ollivier F., Petitot M., “Computing representations for radicals of finitely generated differential ideals”, Appl. Algebra Eng., Commun. Comput., 20:1 (2009), 73–121 | DOI | MR | Zbl

[2] Chistov A., Grigoriev D., “Complexity of a standard basis of a $D$-module”, St. Petersburg Math. J., 20 (2009), 709–736 | DOI | MR | Zbl

[3] Dubé T., “The structure of polynomial ideals and Gröbner bases”, SIAM J. Comput., 19:4 (1990), 750–773 | DOI | MR | Zbl

[4] Grigoriev D., “Weak Bezout inequality for $D$-modules”, J. Complexity, 21 (2005), 532–542 | DOI | MR | Zbl

[5] Hubert E., “Factorization-free decomposition algorithms in differential algebra”, J. Symbolic Comput., 29:4–5 (2000), 641–662 | DOI | MR | Zbl

[6] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, London, 1973 | MR | Zbl

[7] Kondratieva M. V., “An upper bound for minimizing coefficients of dimension Kolchin polynomial”, Program. Comput. Software, 36:2 (2010), 83–86 | DOI | MR | Zbl

[8] Kondratieva M. V., Levin A. B., Mikhalev A. V., Pankratiev E. V., Differential and Difference Dimension Polynomials, Kluwer Academic, Dordrecht, 1999 | MR | Zbl

[9] Mayr E. W., Meyer A. R., “The complexity of a word problem for commutative semigroups and polynomial ideals”, Adv. Math., 46 (1982), 305–329 | DOI | MR | Zbl

[10] Ritt J., Differential Algebra, Amer. Math. Soc., New York, 1950 | MR | Zbl