Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2019_22_5_a22, author = {M. V. Kondratieva}, title = {A~bound for a~typical differential dimension}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {259--269}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a22/} }
M. V. Kondratieva. A~bound for a~typical differential dimension. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 259-269. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a22/
[1] Boulier F., Lazard D., Ollivier F., Petitot M., “Computing representations for radicals of finitely generated differential ideals”, Appl. Algebra Eng., Commun. Comput., 20:1 (2009), 73–121 | DOI | MR | Zbl
[2] Chistov A., Grigoriev D., “Complexity of a standard basis of a $D$-module”, St. Petersburg Math. J., 20 (2009), 709–736 | DOI | MR | Zbl
[3] Dubé T., “The structure of polynomial ideals and Gröbner bases”, SIAM J. Comput., 19:4 (1990), 750–773 | DOI | MR | Zbl
[4] Grigoriev D., “Weak Bezout inequality for $D$-modules”, J. Complexity, 21 (2005), 532–542 | DOI | MR | Zbl
[5] Hubert E., “Factorization-free decomposition algorithms in differential algebra”, J. Symbolic Comput., 29:4–5 (2000), 641–662 | DOI | MR | Zbl
[6] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, London, 1973 | MR | Zbl
[7] Kondratieva M. V., “An upper bound for minimizing coefficients of dimension Kolchin polynomial”, Program. Comput. Software, 36:2 (2010), 83–86 | DOI | MR | Zbl
[8] Kondratieva M. V., Levin A. B., Mikhalev A. V., Pankratiev E. V., Differential and Difference Dimension Polynomials, Kluwer Academic, Dordrecht, 1999 | MR | Zbl
[9] Mayr E. W., Meyer A. R., “The complexity of a word problem for commutative semigroups and polynomial ideals”, Adv. Math., 46 (1982), 305–329 | DOI | MR | Zbl
[10] Ritt J., Differential Algebra, Amer. Math. Soc., New York, 1950 | MR | Zbl