Rings on vector Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 243-258

Voir la notice de l'article provenant de la source Math-Net.Ru

A multiplication on an Abelian group $G$ is a homomorphism $\mu\colon G\otimes G\rightarrow G$. An Abelian group $G$ with a multiplication on it is called a ring on the group $G$. R. A. Beaumont and D. A. Lawver have formulated the problem of studying semisimple groups. An Abelian group is said to be semisimple if there exists a semisimple associative ring on it. Semisimple groups are described in the class of vector Abelian nonmeasurable groups. It is also shown that if a set $I$ is nonmeasurable, $G=\prod\limits_{i \in I} A_i$ is a reduced vector Abelian group, and $\mu$ is a multiplication on $G$, then $\mu$ is determined by its restriction on the sum $\bigoplus\limits_{i\in I} A_i$; this statement is incorrect if the set $I$ is measurable or the group $G$ is not reduced.
@article{FPM_2019_22_5_a21,
     author = {E. I. Kompantseva},
     title = {Rings on vector {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {243--258},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a21/}
}
TY  - JOUR
AU  - E. I. Kompantseva
TI  - Rings on vector Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 243
EP  - 258
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a21/
LA  - ru
ID  - FPM_2019_22_5_a21
ER  - 
%0 Journal Article
%A E. I. Kompantseva
%T Rings on vector Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 243-258
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a21/
%G ru
%F FPM_2019_22_5_a21
E. I. Kompantseva. Rings on vector Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 243-258. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a21/