Rings on vector Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 243-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multiplication on an Abelian group $G$ is a homomorphism $\mu\colon G\otimes G\rightarrow G$. An Abelian group $G$ with a multiplication on it is called a ring on the group $G$. R. A. Beaumont and D. A. Lawver have formulated the problem of studying semisimple groups. An Abelian group is said to be semisimple if there exists a semisimple associative ring on it. Semisimple groups are described in the class of vector Abelian nonmeasurable groups. It is also shown that if a set $I$ is nonmeasurable, $G=\prod\limits_{i \in I} A_i$ is a reduced vector Abelian group, and $\mu$ is a multiplication on $G$, then $\mu$ is determined by its restriction on the sum $\bigoplus\limits_{i\in I} A_i$; this statement is incorrect if the set $I$ is measurable or the group $G$ is not reduced.
@article{FPM_2019_22_5_a21,
     author = {E. I. Kompantseva},
     title = {Rings on vector {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {243--258},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a21/}
}
TY  - JOUR
AU  - E. I. Kompantseva
TI  - Rings on vector Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 243
EP  - 258
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a21/
LA  - ru
ID  - FPM_2019_22_5_a21
ER  - 
%0 Journal Article
%A E. I. Kompantseva
%T Rings on vector Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 243-258
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a21/
%G ru
%F FPM_2019_22_5_a21
E. I. Kompantseva. Rings on vector Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 243-258. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a21/

[1] Mishina A. P., “Separabelnost polnykh pryamykh summ abelevykh grupp bez krucheniya ranga $1$”, Matem. sb., 57 (1962), 375–383 | MR | Zbl

[2] Beamont R. A., Lawver D. A., “Strongly semisimple Abelian groups”, Publ. J. Math., 53:2 (1974), 327–336 | MR

[3] Eclof P. C., Mez H. C., “Additive groups of existentially closed rings”, Abelian Groups and Modules, Proc. of the Udine Conference, Springer, New York, 1984, 243–252 | MR

[4] Fink T., “A note on direct decompositions of large powers of the group of integers”, Commun. Algebra, 26 (1998), 3553–3562 | DOI | MR | Zbl

[5] Fuchs L., Infinite Abelian Groups, v. 1, 2, Academic Press, London, 1973 | MR | Zbl

[6] Gardner B. J., “Radicals of Abelian groups and associative rings”, Acta Math. Hung., 24 (1973), 259–268 | DOI | MR

[7] Gardner B. J., Jackett D. R., “Rings on certain classes of torsion free Abelian groups”, Comment. Math. Univ. Carol., 17 (1976), 493–506 | MR | Zbl

[8] Jacobson N., Structure of Rings, Amer. Math. Soc., Providence, 1956 | MR | Zbl

[9] Kompantseva E. I., “Semisimple rings on completely decomposable Abelian groups”, J. Math. Sci., 154:3 (2009), 324–332 | DOI | MR

[10] Kompantseva E. I., “Torsion free rings”, J. Math. Sci., 171:2 (2010), 213–247 | DOI | MR | Zbl

[11] Kuratowski K., Mostowski A., Set Theory, North-Holland, Amsterdam, 1976 | MR | Zbl

[12] Los J., “On the complete direct sum of countable Abelian groups”, Publ. Math. Debrecen, 3 (1954), 269–272 | MR | Zbl

[13] Woronowicz M., “A note on additive groups of some specific associative rings”, Ann. Math. Siles, 30 (2016), 219–229 | MR | Zbl