Definability of completely decomposable torsion-free
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 145-152
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $C $ be an Abelian group. A class $X $ of Abelian groups is called
a $_CE ^\bullet H $-class if for any groups $A,B \in X$,
it follows from the existence of isomorphisms
$E^\bullet (A) \cong E^\bullet (B)$ and
$\operatorname{Hom}(C,A)\cong \operatorname{Hom}(C,B) $
that there is an isomorphism $A\cong B $. In this paper,
conditions are studied under which the class $\Im _{\mathrm{cd}}^{\mathrm{ad}}$
of completely decomposable almost divisible Abelian groups
and class $ \Im _{\mathrm{cd}}^{*} $ of completely decomposable
torsion-free Abelian groups $A$ where $\Omega(A)$ contains only
incomparable types are $_CE ^\bullet H $-classes,
where $C $ is a completely decomposable torsion-free Abelian group.
@article{FPM_2019_22_5_a14,
author = {T. A. Pushkova},
title = {Definability of completely decomposable torsion-free},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {145--152},
publisher = {mathdoc},
volume = {22},
number = {5},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a14/}
}
T. A. Pushkova. Definability of completely decomposable torsion-free. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 145-152. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a14/