Definability of completely decomposable torsion-free
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 145-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C $ be an Abelian group. A class $X $ of Abelian groups is called a $_CE ^\bullet H $-class if for any groups $A,B \in X$, it follows from the existence of isomorphisms $E^\bullet (A) \cong E^\bullet (B)$ and $\operatorname{Hom}(C,A)\cong \operatorname{Hom}(C,B) $ that there is an isomorphism $A\cong B $. In this paper, conditions are studied under which the class $\Im _{\mathrm{cd}}^{\mathrm{ad}}$ of completely decomposable almost divisible Abelian groups and class $ \Im _{\mathrm{cd}}^{*} $ of completely decomposable torsion-free Abelian groups $A$ where $\Omega(A)$ contains only incomparable types are $_CE ^\bullet H $-classes, where $C $ is a completely decomposable torsion-free Abelian group.
@article{FPM_2019_22_5_a14,
     author = {T. A. Pushkova},
     title = {Definability of completely decomposable torsion-free},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {145--152},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a14/}
}
TY  - JOUR
AU  - T. A. Pushkova
TI  - Definability of completely decomposable torsion-free
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 145
EP  - 152
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a14/
LA  - ru
ID  - FPM_2019_22_5_a14
ER  - 
%0 Journal Article
%A T. A. Pushkova
%T Definability of completely decomposable torsion-free
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 145-152
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a14/
%G ru
%F FPM_2019_22_5_a14
T. A. Pushkova. Definability of completely decomposable torsion-free. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 145-152. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a14/

[1] Lyubimtsev O. V., “Separabelnye abelevy gruppy bez krucheniya s $UA$-koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1419–1422 | MR | Zbl

[2] Puusemp P., “Ob opredelyaemosti periodicheskikh abelevykh grupp svoei polugruppoi endomorfizmov v klasse vsekh periodicheskikh abelevykh grupp”, Izv. AN ESSR. Fiz. Mat., 29:3 (1980), 246–253 | MR | Zbl

[3] Sebeldin A. M., “Usloviya izomorfizma vpolne razlozhimykh abelevykh grupp bez krucheniya s izomorfnymi koltsami endomorfizmov”, Matem. zametki, 11:4 (1972), 403–408 | Zbl

[4] Sebeldin A. M., “Gruppy gomomorfizmov vpolne razlozhimykh abelevykh grupp bez krucheniya”, Izv. vyssh. uchebn. zaved. Matematika, 1973, no. 7, 77–84 | Zbl

[5] Sebeldin A. M., “Ob opredelyaemosti abelevykh grupp svoimi polugruppami endomorfizmov”, Abelevy gruppy i moduli, 1991, no. 10, 125–133

[6] Sebeldin A. M., “Opredelyaemost vektornykh grupp polugruppami endomorfizmov”, Algebra i logika, 33:4 (1994), 422–428 | MR | Zbl

[7] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1977

[8] Baer R., “Types of elements and characteristic subgroups of Abelian groups”, Proc. London Math. Soc., 39 (1935), 481–514 | DOI | MR

[9] Baer R., “Automorphism rings of primary Abelian operator groups”, Ann. Math., 44 (1943), 192–227 | DOI | MR | Zbl

[10] Kaplansky I., “Some results on Abelian groups”, Proc. Nat. Acad. Sci. USA, 38 (1952), 538–540 | DOI | MR | Zbl

[11] Sebeldin A. M., “Isomorphisme naturel des groupes des homomorphismes des groupes abeliens”, Ann. L'IPGANG, Conakry. Ser. A, 7 (1982), 155–158