Algebraic geometry over algebraic structures. VIII. Geometric equivalences and special classes of algebraic structures
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 75-100

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper belongs to our series of works on algebraic geometry over arbitrary algebraic structures. In this one, there will be investigated seven equivalences (namely: geometrical, universal geometrical, quasi-equational, universal, elementary, and combinations thereof) in specific classes of algebraic structures (equationally Noetherian, $\mathrm{q}_\omega$-compact, $\mathrm{u}_\omega$-compact, equational domains, equational co-domains, etc.). The main questions are the following: (1) Which equivalences coincide inside a given class $\mathbf K$, which do not? (2) With respect to which equivalences a given class $\mathbf K$ is invariant, with respect to which it is not?
@article{FPM_2019_22_4_a5,
     author = {E. Yu. Daniyarova and A. G. Myasnikov and V. N. Remeslennikov},
     title = {Algebraic geometry over algebraic structures. {VIII.} {Geometric} equivalences and special classes of algebraic structures},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {75--100},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a5/}
}
TY  - JOUR
AU  - E. Yu. Daniyarova
AU  - A. G. Myasnikov
AU  - V. N. Remeslennikov
TI  - Algebraic geometry over algebraic structures. VIII. Geometric equivalences and special classes of algebraic structures
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 75
EP  - 100
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a5/
LA  - ru
ID  - FPM_2019_22_4_a5
ER  - 
%0 Journal Article
%A E. Yu. Daniyarova
%A A. G. Myasnikov
%A V. N. Remeslennikov
%T Algebraic geometry over algebraic structures. VIII. Geometric equivalences and special classes of algebraic structures
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 75-100
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a5/
%G ru
%F FPM_2019_22_4_a5
E. Yu. Daniyarova; A. G. Myasnikov; V. N. Remeslennikov. Algebraic geometry over algebraic structures. VIII. Geometric equivalences and special classes of algebraic structures. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 75-100. http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a5/