On convex directed subgroups of pseudo lattice-ordered groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 239-252

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that all convex directed subgroups of a $pl$-group form a distributive lattice under inclusions that is a Brouwer lattice. We succeeded in extending some $l$-group results concerning rectifying and regular subgroups to the class of $\mathcal{AO}$-groups. Necessary and sufficient conditions are given for an element of a $pl$-group to be an element with a unique value. In order to prove this, some properties of lexicographic extensions of $\mathcal{AO}$-groups and $pl$-groups are investigated.
@article{FPM_2019_22_4_a15,
     author = {E. E. Shirshova},
     title = {On convex directed subgroups of pseudo lattice-ordered groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {239--252},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a15/}
}
TY  - JOUR
AU  - E. E. Shirshova
TI  - On convex directed subgroups of pseudo lattice-ordered groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 239
EP  - 252
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a15/
LA  - ru
ID  - FPM_2019_22_4_a15
ER  - 
%0 Journal Article
%A E. E. Shirshova
%T On convex directed subgroups of pseudo lattice-ordered groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 239-252
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a15/
%G ru
%F FPM_2019_22_4_a15
E. E. Shirshova. On convex directed subgroups of pseudo lattice-ordered groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 239-252. http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a15/