Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2018_22_3_a8, author = {L. A. Markovich}, title = {Nonparametric estimation of multivariate density and its derivative by dependent data using gamma kernels}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {145--177}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a8/} }
TY - JOUR AU - L. A. Markovich TI - Nonparametric estimation of multivariate density and its derivative by dependent data using gamma kernels JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2018 SP - 145 EP - 177 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a8/ LA - ru ID - FPM_2018_22_3_a8 ER -
%0 Journal Article %A L. A. Markovich %T Nonparametric estimation of multivariate density and its derivative by dependent data using gamma kernels %J Fundamentalʹnaâ i prikladnaâ matematika %D 2018 %P 145-177 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a8/ %G ru %F FPM_2018_22_3_a8
L. A. Markovich. Nonparametric estimation of multivariate density and its derivative by dependent data using gamma kernels. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 145-177. http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a8/
[1] Aksoy H., “Use of gamma distribution in hydrological analysis”, Turkish J. Eng. Environ. Sci., 24 (2000), 419–428
[2] Andrews D. W. K., First order autoregressive processes and strong mixing, Cowles Foundation Discussion Paper 66, Yale University, 1983
[3] Bhattacharya P. K., “Estimation of a probability density function and its derivatives”, Indian J. Statist., A 29 (1967), 373–382 | MR | Zbl
[4] Bosq S., Nonparametric Statistics for Stochastic Processes. Estimation and Prediction, Springer, New York, 1996 | MR
[5] Bouezmarni T., Rombouts J. V. K., “Nonparametric density estimation for multivariate bounded data”, J. Statist. Planning Inference, 140:1 (2007), 139–152 | DOI | MR
[6] Bouezmarni T., Rombouts J. V. K., “Nonparametric density estimation for positive times series”, Comput. Statist. Data Analysis, 54:2 (2010), 245–261 | DOI | MR | Zbl
[7] Bouezmarni T., Scaillet O., “Consistency of asymmetric kernel density estimators and smoothed histograms with application to income data”, Econometric Theory, 21:2 (2005), 390–412 | DOI | MR | Zbl
[8] De Brabanter K., de Brabanter J., de Moor B., “Nonparametric derivative estimation”, Proc. of the 23rd Benelux Conf. on Artificial Intelligence, BNAIC (Gent, Belgium, 2011), 75–81
[9] Brown B. M., Chen S. X., “Beta-Bernstein smoothing for regression curves with compact support”, Scand. J. Statist., 26 (1999), 47–59 | DOI | MR | Zbl
[10] Chen S. X., “Probability density function estimation using gamma kernels”, Ann. Inst. Statist. Math., 54 (2000), 471–480 | DOI | MR
[11] Dobrovidov A. V., Koshkin G. M., “Data-based nonparametric signal filtration”, Austr. J. Statist., 40:1 (2011), 15–24
[12] Dobrovidov A. V., Koshkin G. M., “Regularized data-based nonparametric filtration of stochastic signals”, Proc. of the World Congress on Engineering, v. 1, 2011, 333–337
[13] Dobrovidov A. V., Koshkin G. M., Vasiliev V. A., Non-Parametric State Space Models, Kendrick Press, 2012 | MR | Zbl
[14] Dobrovidov A. V., Markovich L. A., “Data-driven bandwidth choice for gamma kernel estimates of density derivatives on the positive semi-axis”, IFAC Proc. Volumes, 46:11 (2013), 500–505 | DOI
[15] Dobrovidov A. V., Markovich L. A., “Nonparametric gamma kernel estimators of density derivatives on positive semi-axis”, IFAC Proc. Volumes, 46:9 (2013), 910–915 | DOI
[16] Funke B., Kawka R., “Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods”, Comput. Statist. Data Analysis, 92 (2015), 148–162 | DOI | MR | Zbl
[17] Furman E., “On a multivariate gamma distribution”, Statist. Probab. Lett., 78 (2008), 2353–2360 | DOI | MR | Zbl
[18] Hall P., Wehrly T. E., “A geometrical method for removing edge effects from kernel-type nonparametric regression estimators”, J. Am. Statist. Assoc., 86 (1991), 665–672 | DOI | MR
[19] Hürlimann W., “Analytical evaluation of economic risk capital for portfolios of gamma risks”, Turkish J. Eng. Environ. Sci., 31 (2001), 107–122 | MR
[20] Igarashi G., Kakizawa Y., “Bias corrections for some asymmetric kernel estimators”, J. Statist. Planning Inference, 159 (2015), 37–63 | DOI | MR | Zbl
[21] Jones M. C., “Simple boundary correction for density estimation kernel”, Statist. Comput., 3 (1993), 135–146 | DOI | MR
[22] Kushnir A. F., “Asymptotically optimal tests for a regression problem of testing hypotheses”, Theory Probab. Its Appl., 13:4 (1967), 647–666 | DOI | MR
[23] Lejeune M., Sarda P., “Smooth estimators of distribution and density functions”, Comput. Statist. Data Analysis, 14 (1992), 457–471 | DOI | MR | Zbl
[24] Markovich L. A., “Inferences from optimal filtering equation”, Lithuan. Math. J., 55:3 (2015), 413–432 | DOI | MR | Zbl
[25] Markovich L. A., “Gamma kernel estimation of the density derivative on the positive semi-axis by dependent data”, REVSTAT-Statist. J. Statist. Portugal., 14:3 (2016), 327–348 | MR | Zbl
[26] Mathal A. M., Moschopoulos P. G., “A form of multivariate gamma distribution”, Ann. Inst. Statist. Math., 44 (1992), 97–106 | DOI | MR
[27] Müller H. G., “Smooth optimum kernel estimators near endpoints”, Biometrika, 78:3 (1991), 521–530 | DOI | MR | Zbl
[28] Nadarajah S., “Reliability for some bivariate gamma distributions”, Math. Probab. Eng., 2 (2005), 151–163 | DOI | MR | Zbl
[29] Nadarajah S., Gupta A. K., “Some bivariate gamma distributions”, Appl. Math. Lett., 19 (2006), 767–774 | DOI | MR | Zbl
[30] Nadaraya É. A., “On non-parametric estimates of density functions and regression curves”, Theory Probab. Its Appl., 10:1 (1964), 186–190 | DOI | MR
[31] Parzen E., “On estimation of a probability density function and mode”, Ann. Math. Statist., 33:3 (1962), 1065–1076 | DOI | MR | Zbl
[32] Rosenblatt M., “Remarks on some nonparametric estimates of a density function”, Ann. Math. Statist., 27:3 (1956), 832–837 | DOI | MR | Zbl
[33] Sasaki H., Hyvärinen A., Sugiyama M., “Clustering via mode seeking by direct estimation of the gradient of a log-density”, Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2014, Lect. Notes Comput. Sci., 8726, eds. Calders T., Esposito F., Hüllermeier E., Meo R., Springer, Berlin, 2014 | MR
[34] Scaillet O., “Density estimation using inverse and reciprocal inverse Gaussian kernels”, J. Nonparam. Statist., 16 (2004), 217–226 | DOI | MR | Zbl
[35] Schuster E. F., “Estimation of a probability function and its derivatives”, Ann. Math. Statist., 40 (1969), 1187–1195 | DOI | MR | Zbl
[36] Schuster E. F., “Incorporating support constraints into nonparametric estimators of densities”, Commun. Statist. Theory Methods, 14 (1985), 1123–1136 | DOI | MR | Zbl
[37] Silverman B. W., Density Estimation for Statistics and Data Analysis, Chapman and Hall, London, 1986 | MR | Zbl
[38] Tsypkin Ya. Z., “Optimality in adaptive control systems”, Uncertainty and Control, Lect. Notes Control Information Sci., 70, ed. J. Ackermann, Springer, Berlin, 1985, 153–214 | DOI
[39] Turlach B. A., Bandwidth Selection in Kernel Density Estimation: A Review, CORE and Inst. de Statistique, 1993
[40] Wand M. P., Jones M. C., Kernel Smoothing, Chapman and Hall, London, 1995 | MR | Zbl
[41] Zhang S., “A note on the performance of the gamma kernel estimators at the boundary”, Statist. Probab. Lett., 80 (2010), 548–557 | DOI | MR | Zbl