Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2018_22_3_a7, author = {A. E. Mazur}, title = {Fitting time series with heavy tails and strong time dependence}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {127--144}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a7/} }
A. E. Mazur. Fitting time series with heavy tails and strong time dependence. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 127-144. http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a7/
[1] Lidbetter M. R., Lindgren G., Rotsen X., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989 | MR
[2] Mazur A. E., Piterbarg V. I., “Gaussovskie kopulnye vremennye ryady s tyazhelymi khvostami i silnoi vremennoi zavisimostyu”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 70:5 (2015), 197–201 | Zbl
[3] Piterbarg V. I., Dvadtsat lektsii o gaussovskikh protsessakh, MTsNMO, M., 2015
[4] Drees H., “A general class of estimators of the extreme value index”, J. Statist. Planning Inference, 66:1 (1998), 95–112 | DOI | MR | Zbl
[5] Drees H., “On smooth statistical tail functionals”, Scand. J. Statist., 25:1 (1998), 187–210 | DOI | MR | Zbl
[6] Drees H., “Weighted approximation of tail processes for $\beta$-mixing random variables”, Ann. Appl. Probab., 10:4 (2000), 1274–1301 | MR | Zbl
[7] Drees H., “Tail empirical processes under mixing conditions”, Empirical Process Techniques for Dependent Data, eds. Dehling H., Mikosch T., Sørensen M., Birkhäuser, Boston, 2002, 325–342 | DOI | MR | Zbl
[8] Gill R. D., “Non- and semi-parametric maximum likelihood estimators and the von Mises method (part 1)”, Scand. J. Statist., 16:2 (1989), 97–128 | MR | Zbl
[9] De Haan L., Ferreira A., Extreme Value Theory: An Introduction, Springer, New York, 2007 | MR
[10] Hill B. M., “A simple general approach to inference about the tail of a distribution”, Ann. Statist., 3:5 (1975), 1163–1174 | DOI | MR | Zbl
[11] Piterbarg V. I., Asymptotic Methods in Theory of Gaussian Random Processes and Fields, Transl. Math. Monogr., 148, Amer. Math. Soc., Providence, 2012 | DOI | MR
[12] Rootzén H., “Weak convergence of the tail empirical process for dependent sequences”, Stoch. Processes Their Appl., 119:2 (2009), 468–490 | DOI | MR | Zbl