Weak error for the Euler scheme approximation of degenerate diffusions with nonsmooth coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 91-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the weak error associated with the Euler scheme of Kolmogorov like degenerate diffusion processes with nonsmooth bounded coefficients. More precisely, we consider the case of Hölder continuous homogeneous coefficients.
@article{FPM_2018_22_3_a5,
     author = {A. A. Kozhina},
     title = {Weak error for the {Euler} scheme approximation of degenerate diffusions with nonsmooth coefficients},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {91--118},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a5/}
}
TY  - JOUR
AU  - A. A. Kozhina
TI  - Weak error for the Euler scheme approximation of degenerate diffusions with nonsmooth coefficients
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 91
EP  - 118
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a5/
LA  - ru
ID  - FPM_2018_22_3_a5
ER  - 
%0 Journal Article
%A A. A. Kozhina
%T Weak error for the Euler scheme approximation of degenerate diffusions with nonsmooth coefficients
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 91-118
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a5/
%G ru
%F FPM_2018_22_3_a5
A. A. Kozhina. Weak error for the Euler scheme approximation of degenerate diffusions with nonsmooth coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 91-118. http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a5/

[1] Kozhina A., “Ustoichivost perekhodnykh plotnostei vyrozhdennykh diffuzii”, Teoriya veroyatn. i ee primen., 61:3 (2016), 570–579 | DOI | MR

[2] Sonin I. M., “Ob odnom klasse vyrozhdayuschikhsya diffuzionnykh protsessov”, Teoriya veroyatn. i ee primen., 12:3 (1967), 540–547 | Zbl

[3] Bally V., Talay D., “The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function”, Probab. Theory Relat. Fields, 104:1 (1996), 43–60 | DOI | MR | Zbl

[4] Bally V., Talay D., “The law of the Euler scheme for stochastic differential equations. II. Convergence rate of the density”, Monte Carlo Methods Appl., 2:2 (1996), 93–128 | DOI | MR | Zbl

[5] Il'in A. M., Kalashnikov A. S., Oleinik O. A., “Second-order linear equations of parabolic type”, Usp. Mat. Nauk, 17:3 (105) (1962), 3–146 | MR | Zbl

[6] Kolmogorov A. N., “Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)”, Ann. Math., 35 (1934), 116–117 | DOI | MR | Zbl

[7] Konakov V., Kozhina A., Menozzi S., “Stability of densities for perturbed diffusions and Markov chains”, ESAIM: Probab. Statist., 21 (2017), 88–112 | DOI | MR | Zbl

[8] Konakov V., Mammen E., “Local limit theorems for transition densities of Markov chains converging to diffusions”, Probab. Theory Relat. Fields, 117:4 (2000), 551–587 | DOI | MR | Zbl

[9] Konakov V., Mammen E., “Edgeworth type expansions for Euler schemes for stochastic differential equations”, Monte Carlo Methods Appl., 8:3 (2002), 271–285 | DOI | MR | Zbl

[10] Konakov V., Menozzi S., “Weak error for the Euler scheme approximation of diffusions with non-smooth coefficients”, Electron. J. Probab., 22:46 (2017), 1–47 | MR

[11] Konakov V., Menozzi S., Molchanov S., “Explicit parametrix and local limit theorems for some degenerate diffusion processes”, Ann. Inst. H. Poincaré Probab. Statist., 46:4 (2010), 908–923 | DOI | MR | Zbl

[12] Kusuoka S., Stroock D., “Applications of the Malliavin calculus. I”, Proc. of the Taniguchi Inter. Symp. (Katata and Kyoto 1982), Stoch. Analysis, 32, ed. K. Itô, Kinokuniya, Tokyo, 1984, 271–306 | MR

[13] Kusuoka S., Stroock D., “Applications of the Malliavin calculus. II”, J. Fac. Sci. Tokyo Univ. Sec. IA, 32:1 (1985), 1–76 | MR | Zbl

[14] Lemaire V., Menozzi S., “On some non asymptotic bounds for the Euler scheme”, Electron. J. Probab., 15:53 (2010), 1645–1681 | MR | Zbl

[15] Lunardi A., “Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in $\mathbb R^n$”, Ann. Scuola Norm. Super. Pisa Classe Sci., 24:1 (1997), 133–164 | MR | Zbl

[16] Maruyama G., “Continuous Markov processes and stochastic equations”, Rend. Circ. Mat. Palermo, 4 (1955), 48 | DOI | MR | Zbl

[17] Menozzi S., “Parametrix techniques and martingale problems for some degenerate Kolmogorov equations”, Electron. Commun. Probab., 16:23 (2011), 234–250 | DOI | MR | Zbl

[18] Mikulevičius R., Platen E., “Rate of convergence of the Euler approximation for diffusion processes”, Math. Nachrichten, 151:1 (1991), 233–239 | DOI | MR | Zbl

[19] Priola E., “Global Schauder estimates for a class of degenerate Kolmogorov equations”, Stud. Math., 194:2 (2009), 117–153 | DOI | MR | Zbl

[20] Talay D., Tubaro L., “Expansion of the global error for numerical schemes solving stochastic differential equations”, Stoch. Anal. App., 8 (1990), 483–509 | DOI | MR | Zbl

[21] Weber M., “The fundamental solution of a degenerate partial differential equation of parabolic type”, Trans. Am. Math. Soc., 71 (1951), 24–37 | DOI | MR | Zbl