Weak error for the Euler scheme approximation of degenerate diffusions with nonsmooth coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 91-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the weak error associated with the Euler scheme of Kolmogorov like degenerate diffusion processes with nonsmooth bounded coefficients. More precisely, we consider the case of Hölder continuous homogeneous coefficients.
@article{FPM_2018_22_3_a5,
     author = {A. A. Kozhina},
     title = {Weak error for the {Euler} scheme approximation of degenerate diffusions with nonsmooth coefficients},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {91--118},
     year = {2018},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a5/}
}
TY  - JOUR
AU  - A. A. Kozhina
TI  - Weak error for the Euler scheme approximation of degenerate diffusions with nonsmooth coefficients
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 91
EP  - 118
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a5/
LA  - ru
ID  - FPM_2018_22_3_a5
ER  - 
%0 Journal Article
%A A. A. Kozhina
%T Weak error for the Euler scheme approximation of degenerate diffusions with nonsmooth coefficients
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 91-118
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a5/
%G ru
%F FPM_2018_22_3_a5
A. A. Kozhina. Weak error for the Euler scheme approximation of degenerate diffusions with nonsmooth coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 91-118. http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a5/

[1] Kozhina A., “Ustoichivost perekhodnykh plotnostei vyrozhdennykh diffuzii”, Teoriya veroyatn. i ee primen., 61:3 (2016), 570–579 | DOI | MR

[2] Sonin I. M., “Ob odnom klasse vyrozhdayuschikhsya diffuzionnykh protsessov”, Teoriya veroyatn. i ee primen., 12:3 (1967), 540–547 | Zbl

[3] Bally V., Talay D., “The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function”, Probab. Theory Relat. Fields, 104:1 (1996), 43–60 | DOI | MR | Zbl

[4] Bally V., Talay D., “The law of the Euler scheme for stochastic differential equations. II. Convergence rate of the density”, Monte Carlo Methods Appl., 2:2 (1996), 93–128 | DOI | MR | Zbl

[5] Il'in A. M., Kalashnikov A. S., Oleinik O. A., “Second-order linear equations of parabolic type”, Usp. Mat. Nauk, 17:3 (105) (1962), 3–146 | MR | Zbl

[6] Kolmogorov A. N., “Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)”, Ann. Math., 35 (1934), 116–117 | DOI | MR | Zbl

[7] Konakov V., Kozhina A., Menozzi S., “Stability of densities for perturbed diffusions and Markov chains”, ESAIM: Probab. Statist., 21 (2017), 88–112 | DOI | MR | Zbl

[8] Konakov V., Mammen E., “Local limit theorems for transition densities of Markov chains converging to diffusions”, Probab. Theory Relat. Fields, 117:4 (2000), 551–587 | DOI | MR | Zbl

[9] Konakov V., Mammen E., “Edgeworth type expansions for Euler schemes for stochastic differential equations”, Monte Carlo Methods Appl., 8:3 (2002), 271–285 | DOI | MR | Zbl

[10] Konakov V., Menozzi S., “Weak error for the Euler scheme approximation of diffusions with non-smooth coefficients”, Electron. J. Probab., 22:46 (2017), 1–47 | MR

[11] Konakov V., Menozzi S., Molchanov S., “Explicit parametrix and local limit theorems for some degenerate diffusion processes”, Ann. Inst. H. Poincaré Probab. Statist., 46:4 (2010), 908–923 | DOI | MR | Zbl

[12] Kusuoka S., Stroock D., “Applications of the Malliavin calculus. I”, Proc. of the Taniguchi Inter. Symp. (Katata and Kyoto 1982), Stoch. Analysis, 32, ed. K. Itô, Kinokuniya, Tokyo, 1984, 271–306 | MR

[13] Kusuoka S., Stroock D., “Applications of the Malliavin calculus. II”, J. Fac. Sci. Tokyo Univ. Sec. IA, 32:1 (1985), 1–76 | MR | Zbl

[14] Lemaire V., Menozzi S., “On some non asymptotic bounds for the Euler scheme”, Electron. J. Probab., 15:53 (2010), 1645–1681 | MR | Zbl

[15] Lunardi A., “Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in $\mathbb R^n$”, Ann. Scuola Norm. Super. Pisa Classe Sci., 24:1 (1997), 133–164 | MR | Zbl

[16] Maruyama G., “Continuous Markov processes and stochastic equations”, Rend. Circ. Mat. Palermo, 4 (1955), 48 | DOI | MR | Zbl

[17] Menozzi S., “Parametrix techniques and martingale problems for some degenerate Kolmogorov equations”, Electron. Commun. Probab., 16:23 (2011), 234–250 | DOI | MR | Zbl

[18] Mikulevičius R., Platen E., “Rate of convergence of the Euler approximation for diffusion processes”, Math. Nachrichten, 151:1 (1991), 233–239 | DOI | MR | Zbl

[19] Priola E., “Global Schauder estimates for a class of degenerate Kolmogorov equations”, Stud. Math., 194:2 (2009), 117–153 | DOI | MR | Zbl

[20] Talay D., Tubaro L., “Expansion of the global error for numerical schemes solving stochastic differential equations”, Stoch. Anal. App., 8 (1990), 483–509 | DOI | MR | Zbl

[21] Weber M., “The fundamental solution of a degenerate partial differential equation of parabolic type”, Trans. Am. Math. Soc., 71 (1951), 24–37 | DOI | MR | Zbl