Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2018_22_3_a3, author = {G. A. Zverkina}, title = {On some extended {Erlang--Sevastyanov} queueing system and its convergence rate}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {57--82}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a3/} }
TY - JOUR AU - G. A. Zverkina TI - On some extended Erlang--Sevastyanov queueing system and its convergence rate JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2018 SP - 57 EP - 82 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a3/ LA - ru ID - FPM_2018_22_3_a3 ER -
G. A. Zverkina. On some extended Erlang--Sevastyanov queueing system and its convergence rate. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 57-82. http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a3/
[1] Borovkov A. A., Asimptoticheskie metody v teorii massovogo obsluzhivaniya, Fizmatgiz, M., 1980
[2] Gnedenko B. V., Belyaev Yu. K., Solovev A. D., Matematicheskie metody v teorii nadezhnosti, Nauka, M., 1965 | MR
[3] Gnedenko B. V., Kovalenko I. N., Vvedenie v teoriyu massovogo obsluzhivaniya, Nauka, M., 1966 | MR
[4] Sevastyanov B. A., “Ergodicheskaya teorema dlya markovskikh protsessov i ee prilozhenie k telefonnym sistemam s otkazami”, Teor. ver. i ee prim., 2:1 (1957), 106–116 | MR | Zbl
[5] Sevastyanov B. A., “Formuly Erlanga v telefonii pri proizvolnom zakone raspredeleniya dlitelnosti razgovora”, Teor. ver. i ee prim., 2:1 (1957), 135
[6] Shtoiyan D., Kachestvennye svoistva i otsenki stokhasticheskikh modelei, Mir, M., 1979
[7] Afanasyeva L. G., Tkachenko A. V., “On the convergence rate for queueing and reliability models described by regenerative processes”, J. Math. Sci., 218:2 (2016), 119–136 | DOI | MR | Zbl
[8] Asmussen S., Applied Probability and Queues, Springer, New York, 2003 | MR | Zbl
[9] Doeblin W., “Exposé de la théorie des chaînes simples constantes de Markov à un nombre fini d'états”, Rev. Math. l'Union Interbalkanique, 2 (1938), 77–105
[10] Erlang A. K., “Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges”, P. O. Elect. Eng. J., 10 (1918), 189–197
[11] Fortet R., Calcul des probabilités, CNRS, Paris, 1950 | MR
[12] Golovastova E., On convergence rate for an infinite-channel queuing system with Poisson input flow, arXiv: 1711.07075 [math.PR]
[13] Griffeath D., “A maximal coupling for Markov chains”, Z. Wahrsch. Verw. Gebiete., 31:2 (1975), 95–106 | DOI | MR | Zbl
[14] Kalashnikov V. V., Mathematical Methods in Queueing Theory, Kluwer Academic, Dordrecht, 1994 | MR
[15] Karlin S., Taylor H. M., A Second Course in Stochastic Processes, Academic Press, San Diego, 1975 | MR
[16] Kato K., “Coupling lemma and its application to the security analysis of quantum key distribution”, Tamagawa Univ. Quantum ICT Research Inst. Bull., 4:1 (2014), 23–30
[17] Stadje W., “The busy period of the queueing system $M| G| \infty$”, J. Appl. Probab., 22 (1985), 697–704 | DOI | MR | Zbl
[18] Takács L., Introduction to the Theory of Queues, Oxford Univ. Press, Oxford, 1962 | MR | Zbl
[19] Thorisson H., Coupling, Stationarity, and Regeneration, Springer, Berlin, 2000 | MR | Zbl
[20] Veretennikov A. Yu., “On the rate of convergence for infinite server Erlang–Sevastyanov's problem”, Queueing Systems, 76:2 (2014), 181–203 | DOI | MR | Zbl
[21] Veretennikov A., “On recurrence and availability factor for single-server system with general arrivals”, Reliability Theory Appl., 11:3 (42) (2016), 49–58
[22] Veretennikov A., “On convergence rate for Erlang–Sevastyanov type models with infinitely many servers”, Theory Stoch. Processes, 2017, no. 1, 88–102, arXiv: 1412.3849 | MR
[23] Veretennikov A., Butkovsky O. A., “On asymptotics for Vaserstein coupling of Markov chains”, Stoch. Processes Appl., 123:9 (2013), 3518–3541 | DOI | MR | Zbl
[24] Veretennikov A. Yu., Zverkina G. A., “Simple proof of Dynkin's formula for single-server systems and polynomial convergence rates”, Markov Processes Relat. Fields, 20 (2014), 479–504 | MR | Zbl