Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2018_22_3_a2, author = {E. M. Ermishkina and E. B. Yarovaya}, title = {Simulation of branching random walks on a~multidimensional lattice}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {37--56}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a2/} }
TY - JOUR AU - E. M. Ermishkina AU - E. B. Yarovaya TI - Simulation of branching random walks on a~multidimensional lattice JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2018 SP - 37 EP - 56 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a2/ LA - ru ID - FPM_2018_22_3_a2 ER -
E. M. Ermishkina; E. B. Yarovaya. Simulation of branching random walks on a~multidimensional lattice. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 37-56. http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a2/
[1] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970
[2] Zenyuk D. A., “Modelirovanie sluchainykh bluzhdanii na regulyarnykh fraktalnykh mnozhestvakh”, Matem. modelirovanie, 26:11 (2014), 101–104 | MR | Zbl
[3] Molchanov S. A., Yarovaya E. B., “Struktura populyatsii vnutri rasprostranyayuschegosya fronta vetvyaschegosya sluchainogo bluzhdaniya s konechnym chislom tsentrov generatsii chastits”, Dokl. RAN, 447:3 (2012), 265–268 | Zbl
[4] Yarovaya E. B., Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Tsentr prikl. issled. pri mekhaniko-matematicheskom f-te MGU, M., 2007
[5] Yarovaya E. B., “Kriterii eksponentsialnogo rosta chisla chastits v modelyakh vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 55:4 (2010), 705–731 | DOI
[6] Yarovaya E. B., “Spektralnye svoistva evolyutsionnykh operatorov v modelyakh vetvyaschikhsya bluzhdanii s neskolkimi istochnikami vetvleniya”, Matem. zametki, 92:1 (2012), 124–140 | DOI
[7] Yarovaya E. B., “Struktura polozhitelnogo diskretnogo spektra evolyutsionnogo operatora vetvyaschikhsya sluchainykh bluzhdanii”, Dokl. RAN, 463:6 (2015), 646–649 | DOI | Zbl
[8] Albeverio S., Bogachev L. V., Yarovaya E. B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Acad. Sci. Paris Sér. I Math., 326:8 (1998), 975–980 | DOI | MR | Zbl
[9] Andries E., Umarov S., Steinberg S., “Monte Carlo random walk simulations based on distributed order differential equations with applications to cell biology”, Fract. Calc. Appl. Anal., 9:4 (2006), 351–369 | MR | Zbl
[10] Bramson M., Ney P., Tao J., “The population composition of a multitype branching random walk”, Ann. Appl. Probab., 2:3 (1992), 575–596 | DOI | MR | Zbl
[11] Cormen T. H., Leiserson C. E., Rivest R. L., Stein C., Introduction to Algorithms, MIT Press, Cambridge, 2009 | MR | Zbl
[12] Daskalova N., “EM algorithm for estimation of the offspring probabilities in some branching models”, Nonlinear Dynamics of Electronic Systems, eds. V. M. Mladenov, P. Ch. Ivanov, Springer, Cham, 2014, 181–188 | DOI | Zbl
[13] J. Gärtner, S. A. Molchanov, “"Parabolic problems for the Anderson model. I. Intermittency and related topics”, Comm. Math. Phys., 132:3 (1990), 613–655 | DOI | MR
[14] Ho L. S. T., Xu J., Crawford F. W., Minin V. N., Suchard M. A., “Birth/birth-death processes and their computable transition probabilities with biological applications”, J. Math. Biology, 76:4 (2018), 911–944 | DOI | MR | Zbl
[15] Kleinhans D., Friedrich R., “Maximum likelihood estimation of drift and diffusion functions”, Phys. Lett. A, 368:3–4 (2007), 194–198 | DOI | MR | Zbl
[16] Kolomeisky A. B., Fisher M. E., “Periodic sequential kinetic models with jumping, branching and deaths”, Phys. A, 279:1–4 (2000), 1–20 | DOI | MR
[17] Molchanov S., “Reaction-diffusion equations in the random media: localization and intermittency”, Nonlinear Stochastic PDEs, IMA Vol. Math. Its Appl., 77, eds. Funaki T., Woyczynski W. A., Springer, New York, 1996, 81–109 | DOI | MR | Zbl
[18] Moral P. D., Jasra A., Note on random walks with absorbing barriers and sequential Monte Carlo methods, 2016, arXiv: 1611.03177 | MR
[19] Murai F., Ribeiro B., Towsley D., Gile K., “Characterizing branching processes from sampled data”, WWW '13 Companion Proc. of the 22nd Int. Conf. on World Wide Web, ACM, New York, 2013, 805–812
[20] Tuerlinckx F., Maris E., Ratcliff R., De Boeck P., “A comparison of four methods for simulating the diffusion process”, Behavior Res. Methods, Instruments, Computers, 33:4 (2001), 443–456 | DOI
[21] Vatutin V. A., Topchiĭ V. A., Yarovaya E. B., “Catalytic branching random walks and queueing systems with a random number of independent servers”, Teor. \u Imovir. Mat. Stat., 69 (2003), 1–15 | MR | Zbl
[22] Yarovaya E. B., “Branching random walks with several sources”, Math. Popul. Stud., 20:1 (2013), 14–26 | DOI | MR | Zbl
[23] Yarovaya E. B., “Positive discrete spectrum of the evolutionary operator of supercritical branching walks with heavy tails”, Methodology Comput. Appl. Probab., 19:4 (2016), 1151–1167 | DOI | MR
[24] Zeldovich Ya. B., Molchanov S. A., Ruzmaikin A. A., Sokoloff D. D., Intermittency, Diffusion and Generation in a Nonstationary Random Medium, v. 1, Rev. Math. Math. Phys., 15, Cambridge Sci. Publ., Cambridge, 2014 | MR