Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2018_22_3_a0, author = {L. G. Afanaseva}, title = {Stability conditions for retrial queueing systems with regenerative input flow}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {5--18}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a0/} }
TY - JOUR AU - L. G. Afanaseva TI - Stability conditions for retrial queueing systems with regenerative input flow JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2018 SP - 5 EP - 18 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a0/ LA - ru ID - FPM_2018_22_3_a0 ER -
L. G. Afanaseva. Stability conditions for retrial queueing systems with regenerative input flow. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 5-18. http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a0/
[1] Afanaseva L. G., Tkachenko A., “Mnogokanalnye sistemy obsluzhivaniya s regeneriruyuschim vkhodyaschim potokom”, Teoriya veroyatn. i ee primen., 58:2 (2013), 210–234 | DOI
[2] Sevastyanov B. A., “Ergodicheskaya teorema dlya markovskikh protsessov i ee prilozhenie k telefonnym sistemam s otkazami”, Teoriya veroyatn. i ee primen., 2:1 (1957), 106–116 | MR | Zbl
[3] Afanaseva L. G., Bashtova E. E., “Coupling method for asymptotic analysis of queue with regenerative input and unreliable server”, Queueing Systems, 76:2 (2014), 125–147 | DOI | MR
[4] Artalejo S. R., “Stationary analysis of the characteristics of the $M|M|2$ queue with constant repeated attempts”, Opsearch., 33 (1996), 83–95 | MR | Zbl
[5] Artalejo S. R., Gómez-Corral A., Neuts M. F., “Analysis of multiserver queues with constant retrial rate”, Europ. J. Operat. Res., 135 (2001), 569–581 | DOI | MR | Zbl
[6] Choi B. D., Rhee K. H., Park K. K., “The $M| G| 1$ retrial queue with retrial rate control policy”, Probab. Eng. Inform. Sci., 7 (1993), 29–46 | DOI
[7] Choi B. D., Rhee K. H., Park K. K., Pearce C. E. M., “An $M| M| 1$ retrial queue with control policy and general retrial times”, Queueing Systems, 14 (1993), 175–292 | DOI | MR
[8] Choi B. D., Shin J. W., Ahn W. C., “Retrial queues with collision arising from unslotted CSMA|CD protocol”, Queueing Systems, 11 (1992), 335–356 | DOI | MR | Zbl
[9] Cohen S. W., “Basic problems of telephone traffic theory and influence of repeated calls”, Philips Telecommunic. Rev., 18 (1957), 49–100
[10] Falin G. I., Artalejo J. R., “Approximation for multiserver queues with bulking/retrial discipline”, OR Spectrum, 17 (1995), 239–244 | DOI | MR | Zbl
[11] Falin G. I., Templeton S. G. C., Retrial Queues, Chapman Hall, London, 1997 | Zbl
[12] Fayolle G., “A simple telephone exchange with delayed feedback”, Teletraffic Analysis in Computer Performance Evaluation, eds. O. S. Boxma, S. W. Cohen, H. C. Tijms, Elsevier, Amsterdam, 1986
[13] Feller W., An Introduction to Probability Theory and Its Applications, v. II, Wiley, 1950 | MR | Zbl
[14] Gómez-Corral A., Ramalhoto M. F., “On the stationary distribution of Markovian process arising in the theory of multiserver retrial queueing systems”, Math. Comput. Modelling, 30 (1999), 141–158 | DOI | MR | Zbl
[15] Grandell J., Doubly Stochastic Poisson Process, Springer, Berlin, 1976 | MR
[16] Neuts M. F., Structured Stochastic Matrices of $M|G|1$ Type and Their Applications, Marcel Dekker, New York, 1989 | MR | Zbl
[17] Thorisson H., Coupling, Stationarity and Regeneration, Springer, New York, 2000 | MR | Zbl
[18] Wilkinson R. I., “Theories for toll traffic engineering in the USA”, Bell System Tech. J., 35 (1950), 421–514 | DOI | MR
[19] Zeifman A., Satin Y., Morozov E., Nekrasova R., Gorshenin A., “On the ergodicity bounds for a constant retrial rate queueing model”, 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2016, 269–272