Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2018_22_2_a8, author = {A. V. Zarodnyuk and D. I. Bugrov and O. Yu. Cherkasov}, title = {Features of the support reaction in the range maximization problem in a resistant medium}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {147--158}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a8/} }
TY - JOUR AU - A. V. Zarodnyuk AU - D. I. Bugrov AU - O. Yu. Cherkasov TI - Features of the support reaction in the range maximization problem in a resistant medium JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2018 SP - 147 EP - 158 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a8/ LA - ru ID - FPM_2018_22_2_a8 ER -
%0 Journal Article %A A. V. Zarodnyuk %A D. I. Bugrov %A O. Yu. Cherkasov %T Features of the support reaction in the range maximization problem in a resistant medium %J Fundamentalʹnaâ i prikladnaâ matematika %D 2018 %P 147-158 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a8/ %G ru %F FPM_2018_22_2_a8
A. V. Zarodnyuk; D. I. Bugrov; O. Yu. Cherkasov. Features of the support reaction in the range maximization problem in a resistant medium. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 147-158. http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a8/
[1] Aleksandrov V. V., Voronin L. I., Glazkov Yu. N., Ishlinskii A. Yu., Sadovnichii V. A., Matematicheskie zadachi dinamicheskoi imitatsii aerokosmicheskikh poletov, Izd-vo Mosk. un-ta, M., 1995
[2] Braison A., Kho Yu-Shi, Prikladnaya teoriya optimalnogo upravleniya, Mir, M., 1972
[3] Golubev Yu. F., “Brakhistokhrona s treniem”, Izv. RAN. Teor. i sist. upravl., 2010, no. 5, 41–52 | Zbl
[4] Gurman V. I., Ni Min Kan, “Vyrozhdennye zadachi optimalnogo upravleniya. I”, Avtomat. i telemekh., 2011, no. 3, 36–50 | Zbl
[5] Zarodnyuk A. V., Cherkasov O. Yu., “Kachestvennyi analiz optimalnykh traektorii dvizheniya materialnoi tochki v soprotivlyayuscheisya srede i zadacha o brakhistokhrone”, Izv. RAN. Teor. i sist. upravl., 2015, no. 1, 41–49 | DOI | MR | Zbl
[6] Lokshin B. Ya., Cherkasov O. Yu., “O strukture optimalnykh traektorii dvizheniya vraschayuschegosya tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1990, no. 2, 63–67
[7] Panasyuk A. I., Panasyuk V. I., Asimptoticheskaya magistralnaya optimizatsiya upravlyaemykh sistem, Nauka i tekhnika, Minsk, 1986 | MR
[8] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983 | MR
[9] Cherkasov O. Yu., Yakushev A. G., “Singular arcs in the optimal evasion against a proportional navigation vehicle”, JOTA, 113:2 (2002), 211–226 | DOI | MR | Zbl
[10] Cherkasov O. Yu., Zarodnyuk A. V., “Brachistochrone problem with Coulomb friction and viscouse drag: qualitative analysis”, Preprints 1st Conf. on Modelling, Identification and Control of Nonlinear System, MICNON 2015 (St. Petersburg, Russia, 24–26 June, 2015), IFAC, 1018–1023
[11] Jeremić O., Šalinić S., Obradović A., Mitrović Z., “On the brachistochrone of a variable mass particle in general force fields”, Math. Comput. Modelling, 54 (2011), 2900–2912 | DOI | MR | Zbl
[12] Kelley H. J., “A transformation approach to singular subarcs in optimal trajectory and control problems”, SIAM J. Control, 2 (1964), 234–240 | MR | Zbl
[13] Šalinić S., “Contribution to the brachistochrone problem with Coulomb friction”, Acta Mech., 208 (2009), 97–115 | DOI
[14] Vratanar B., Saje M., “On the analytical solution of the brachistochrone problem in a non-conservative field”, Int. J. Non-Linear Mech., 33 (1998), 489–505 | DOI | MR | Zbl