Features of the support reaction in the range maximization problem in a resistant medium
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 147-158
Voir la notice de l'article provenant de la source Math-Net.Ru
The horizontal coordinate's maximization problem of a mass-point as well as the corresponding brachistochrone problem is considered. The mass-point is supposed to be moving in a vertical plane under the influence of gravity and viscous drag that is proportional to the $n$th degree of the velocity. The analysis of the reaction force, which is considered as control along the extremal curve, is provided. It is established that the reaction of the basement can change its sign no more than one time, moreover, it changes only from negative values to positive values.
@article{FPM_2018_22_2_a8,
author = {A. V. Zarodnyuk and D. I. Bugrov and O. Yu. Cherkasov},
title = {Features of the support reaction in the range maximization problem in a resistant medium},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {147--158},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a8/}
}
TY - JOUR AU - A. V. Zarodnyuk AU - D. I. Bugrov AU - O. Yu. Cherkasov TI - Features of the support reaction in the range maximization problem in a resistant medium JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2018 SP - 147 EP - 158 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a8/ LA - ru ID - FPM_2018_22_2_a8 ER -
%0 Journal Article %A A. V. Zarodnyuk %A D. I. Bugrov %A O. Yu. Cherkasov %T Features of the support reaction in the range maximization problem in a resistant medium %J Fundamentalʹnaâ i prikladnaâ matematika %D 2018 %P 147-158 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a8/ %G ru %F FPM_2018_22_2_a8
A. V. Zarodnyuk; D. I. Bugrov; O. Yu. Cherkasov. Features of the support reaction in the range maximization problem in a resistant medium. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 147-158. http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a8/