Guaranteed approach for determining the optimal design of accelerometer unit calibration
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 133-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

The calibration problem is considered for the accelerometer unit at a high-precision test bench. Besides instrumental errors of the accelerometer unit itself, possible faults of the test bench (which are accumulated during its operation) are taken into account. One of the main problems is to choose the optimal design of the angular positions of the unit. The guaranteed approach is proposed to determine this optimal design.
@article{FPM_2018_22_2_a7,
     author = {A. A. Golovan and A. I. Matasov},
     title = {Guaranteed approach for determining the optimal design of accelerometer unit calibration},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {133--145},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a7/}
}
TY  - JOUR
AU  - A. A. Golovan
AU  - A. I. Matasov
TI  - Guaranteed approach for determining the optimal design of accelerometer unit calibration
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 133
EP  - 145
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a7/
LA  - ru
ID  - FPM_2018_22_2_a7
ER  - 
%0 Journal Article
%A A. A. Golovan
%A A. I. Matasov
%T Guaranteed approach for determining the optimal design of accelerometer unit calibration
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 133-145
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a7/
%G ru
%F FPM_2018_22_2_a7
A. A. Golovan; A. I. Matasov. Guaranteed approach for determining the optimal design of accelerometer unit calibration. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 133-145. http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a7/

[1] Akimov P. A., Derevyankin A. V., Matasov A. I., Garantiruyuschee otsenivanie i $l_1$-approksimatsiya v zadachakh otsenivaniya parametrov BINS pri stendovykh ispytaniyakh, Izd-vo Mosk. un-ta, M., 2012

[2] Bolotin Yu. V., Golikov V. P., Larionov S. V., Trebukhov A. V., “Algoritm kalibrovki platformennoi inertsialnoi navigatsionnoi sistemy”, Giroskopiya i navigatsiya, 2008, no. 3, 13–27

[3] Vavilova N. B., Parusnikov N. A., Sazonov I. Yu., “Kalibrovka beskardannykh navigatsionnykh sistem pri pomoschi grubykh odnostepennykh stendov”, Sovrem. probl. matem. i mekh. Prikl. issled., 1 (2009), 212–223

[4] Gusinskii V. Z., Lesyuchevskii V. M., Litmanovich Yu. A., Stolbov A. A., “Algoritm kalibrovki trekhosnogo bloka nyutonometrov, prednaznachennogo dlya ispolzovaniya v BINS”, Giroskopiya i navigatsiya, 2000, no. 4(31), 86

[5] Dranitsyna E. V., “Kalibrovka izmeritelnogo modulya po navigatsionnomu resheniyu BINS: vybor plana dvizhenii stenda”, Sb. mater. XXIV Sankt-Peterburg. konf. po integrirovannym navigatsionnym sistemam, SPb., 2017, 235–240

[6] Egorov Yu. G., Popov E. A., “Issledovanie minimalno izbytochnykh programm kalibrovki triady akselerometrov”, Aviakosmicheskoe priborostroenie, 2016, no. 6, 3–8

[7] Emelyantsev G. I., Stepanov A. P., Integrirovannye inertsialno-sputnikovye sistemy orientatsii i navigatsii, TsNII «Elektropribor», SPb., 2016

[8] Ermakov V. S., Dunaev D. A., Shirokov A. A. i dr., “Kalibrovka besplatformennykh inertsialnykh sistem navigatsii i orientatsii”, Aerokosm. tekhn. Vestn. PGTU, 2004, no. 18, 25–30

[9] Izmailov E. A., Lepe S. N., Molchanov A. V., Polikovskii E. F., “Skalyarnyi sposob kalibrovki i balansirovki besplatformennykh inertsialnykh navigatsionnykh sistem”, Sb. mater. Yubileinoi XV Sankt-Peterburgskoi konf. po integrirovannym navigatsionnym sistemam, SPb., 2008, 145–154

[10] Lidov M. L., “K apriornym otsenkam tochnosti opredeleniya parametrov po metodu naimenshikh kvadratov”, Kosm. issled., 2:5 (1964), 713–715

[11] Cai Q., Yang G., Song N., Lin Y., “Systematic calibration for ultra-high accuracy inertial measurement unit”, Sensors, 16:6 (2016), 940 | DOI

[12] Kim M.-S., Yu S.-B., Lee K.-S., “Development of high-precision calibration method for inertial measurement unit”, Int. J. Precis. Eng. Manuf., 15:3 (2014), 567–575 | DOI

[13] Matasov A. I., Estimators for Uncertain Dynamic Systems, Springer, Berlin, 2013 | MR

[14] Panahandeh G., Skog I., Jansson M., “Calibration of the accelerometer triad of an inertial measurement unit, maximum likelihood estimation and Cramer-Rao bound”, Int. Conf. on Indoor Positioning and Indoor Navigation (Zurich, 2010)

[15] Secer G., Barshan B., “Improvements in deterministic error modeling and calibration of inertial sensors and magnetometers”, Sensors Actuators A, 247 (2016), 522–538 | DOI

[16] www.acutronic.com/ru/produkcija/2-osevye-stendy.html