Identification of parameters of a~model of a~movable motion platform
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 73-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use specialized simulators to train drivers of vehicles difficult to drive. The environment created by such simulator for drivers must be as close to reality as possible. To simulate the overloads that occur during the motion of the simulated object, movable platform stands are used. Usually simulator software is developed for a particular imitation stand, which limits the use of such software for other equipment configuration. In addition, often the sensors in the mechanisms of the platform are either not precise enough or absent altogether, and the geometric parameters of the platform change with time due to deformations due to constant loads. These factors negatively affect the management of the platform and, therefore, the accuracy of dynamic simulation and the quality of coordination with visual and other types of simulation. The purpose of this paper is to show that identification of platform parameters and platform positioning can be constructed without using measurements from internal sensors located in the mechanisms of the platform. To solve the problem, the authors developed an algorithm of semi-automatic identification of parameters of a platform model with a system of video analysis. Upon identification of parameters of a platform it is possible to monitor its angular motions without video analysis. Assessment of platform orientation is performed with angular velocity sensors (AVS) and accelerometers. The use of the suggested algorithms enables quick adaptation of stimulator software to any motion platform.
@article{FPM_2018_22_2_a4,
     author = {D. S. Burlakov and V. V. Latonov and V. A. Chertopolokhov},
     title = {Identification of parameters of a~model of a~movable motion platform},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {73--88},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a4/}
}
TY  - JOUR
AU  - D. S. Burlakov
AU  - V. V. Latonov
AU  - V. A. Chertopolokhov
TI  - Identification of parameters of a~model of a~movable motion platform
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 73
EP  - 88
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a4/
LA  - ru
ID  - FPM_2018_22_2_a4
ER  - 
%0 Journal Article
%A D. S. Burlakov
%A V. V. Latonov
%A V. A. Chertopolokhov
%T Identification of parameters of a~model of a~movable motion platform
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 73-88
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a4/
%G ru
%F FPM_2018_22_2_a4
D. S. Burlakov; V. V. Latonov; V. A. Chertopolokhov. Identification of parameters of a~model of a~movable motion platform. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 73-88. http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a4/

[1] Aleksandrov V. V., Matematicheskie zadachi dinamicheskoi imitatsii aerokosmicheskikh poletov, MGU, M., 1995

[2] Bardushkina I. V., Metody dekompozitsii v matematicheskom modelirovanii dinamiki imitatsionnogo stenda opornogo tipa, Avtoref. dis.\ldots kand. fiz.-mat. nauk, M., 2001

[3] Bakhvalov N. S., Chislennye metody (analiz, algebra, obyknovennye differentsialnye uravneniya), Nauka, M., 1975

[4] Bugrov D. I., Lebedev A. V., Chertopolokhov V. A., “Otsenka uglovoi skorosti vrascheniya tela pri pomoschi sistemy trekinga”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2014, no. 1, 68–71

[5] Gordeev V. N., Kvaterniony i trekhmernaya geometriya, Kiev, 2012

[6] Isaev V. K., Sonin V. V., “Ob odnoi modifikatsii metoda Nyutona chislennogo resheniya kraevykh zadach”, Zh. vychisl. matem. i matem. fiz., 3:6 (1963), 1114–1116

[7] Sergienko A. B., Tsifrovaya obrabotka signalov, BKhV-Peterburg, SPb., 2011

[8] Shnaier B., Prikladnaya kriptografiya. Protokoly, algoritmy i iskhodnye teksty na yazyke C, Triumf, 2002

[9] Andreff N., Martinet P., “Vision-based self-calibration and control of parallel kinematic mechanisms without proprioceptive sensing”, Intelligent Service Robotics, 2:2 (2009), 71–80 | DOI

[10] Gao Meng, Li Tiemin, Yin Wensheng, “Calibration method and experiment of Stewart platform using a laser tracker”, 2003 IEEE Int. Conf. on Systems, Man and Cybernetics (ICSMC) (2003)

[11] Ren C. Luo, Cheng-Hsun Hsieh, Shih Che Chou, “Effective visual calibration system for parallel robot using decision tree with cooperative coevolution network approach”, 2015 IEEE Int. Conf. on Industrial Technology (ICIT) (2015)

[12] Meng Y., Zhuang H., “Autonomous robot calibration using vision technology”, Robotics Computer-Integrated Manufacturing, 23:4 (2007), 436–446 | DOI

[13] Nelder J. A., Mead R., “A simplex method for function minimization”, Computer J., 7 (1965), 308–313 | DOI | MR | Zbl

[14] Ren X.-D., Feng Z.-R., Su C.-P., “A new calibration method for parallel kinematics machine tools using orientation constraint”, Int. J. Machine Tools Manufacture, 49:9 (2009), 708–721 | DOI

[15] Stewart D., “A platform with six degrees of freedom”, Aircraft Engineering Aerospace Technology, 38:4 (1966), 30–35 | DOI