Spectral analysis of the airborne vector gravimetry problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 33-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several possible approaches for airborne vector gravimetry are compared using the spectral analysis technique. The airborne gravimetry equations are reduced to a time-invariant form using a special averaging method. Then the Fourier transform is applied to the equations. The accuracy of each approach is determined as the power spectral density of the gravity Wiener estimate error. Numerical results for the accuracy of each approach are presented given a priori stochastic models for the gravity disturbance vector and measurement errors.
@article{FPM_2018_22_2_a2,
     author = {Yu. V. Bolotin and V. S. Vyazmin},
     title = {Spectral analysis of the airborne vector gravimetry problem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {33--57},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a2/}
}
TY  - JOUR
AU  - Yu. V. Bolotin
AU  - V. S. Vyazmin
TI  - Spectral analysis of the airborne vector gravimetry problem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 33
EP  - 57
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a2/
LA  - ru
ID  - FPM_2018_22_2_a2
ER  - 
%0 Journal Article
%A Yu. V. Bolotin
%A V. S. Vyazmin
%T Spectral analysis of the airborne vector gravimetry problem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 33-57
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a2/
%G ru
%F FPM_2018_22_2_a2
Yu. V. Bolotin; V. S. Vyazmin. Spectral analysis of the airborne vector gravimetry problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 33-57. http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a2/

[1] Bolotin Yu. V., Golovan A. A., “O metodakh inertsialnoi gravimetrii”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2013, no. 5, 59–67 | Zbl

[2] Bolotin Yu. V., Golovan A. A., Parusnikov N. A., Uravneniya aerogravimetrii. Algoritmy i rezultaty ispytanii, Izd-vo Tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, M., 2002

[3] Golovan A. A., Parusnikov N. A., Matematicheskie osnovy navigatsionnykh sistem, v. 1, Maks Press, M., 2011

[4] Peshekhonov V. G., Stepanov O. A., Avgustov L. I., Blazhnov B. A. i dr., Sovremennye metody i sredstva izmereniya parametrov gravitatsionnogo polya Zemli, TsNII «Elektropribor», SPb., 2017

[5] Becker D., Becker M., Leinen A., Zhao Y., “Estimability in strapdown airborne gravimetry”, Proc. of the 3rd Int. Gravity Field Service (IGFS) (Shanghai, China, June 30 — July 6, 2014), IAG Symposia, 144, eds. Jin S., Barzaghi R., Springer, 2015, 11–15

[6] Bolotin Yu. V., Vyazmin V. S., “Gravity anomaly estimation by airborne gravimetry data using LSE and minimax optimization and spherical wavelet expansion”, Gyroscopy Navigation, 6:4 (2015), 310–317 | DOI

[7] Bolotin Yu. V., Vyazmin V. S., “Gravity anomaly vector determination along flight trajectory and in terms of spherical wavelet coefficients using airborne gravimetry data”, Proc. of the 4th IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements, CSRI «Elektropribor», St. Petersburg, 2016, 83–86

[8] Dongkai D., Xingshu W., Dejun Z., Zongsheng H., “An improved method for dynamic measurement of deflections of the vertical based on the maintenance of attitude reference”, Sensors, 14:9 (2014), 16322–16342 | DOI

[9] Freeden W., Michel V., Multiscale Potential Theory With Applications to Geoscience, Birkhäuser, 2004 | MR | Zbl

[10] Von Frese R. B. R., Jones M. B., Kim J. W., Kim J. K., “Analysis of anomaly correlations”, J. Geophysics, 62:1 (1997), 342–351 | DOI | MR

[11] Jekeli C., “Airborne vector gravimetry using precise, position-aided inertial measurement units”, Bull. Geodesique, 69 (1995), 1–11 | DOI

[12] Jekeli C., “Potential theory and the static gravity field of the Earth”, Treatise on Geophysics, 3 (2015), 9–35 | DOI

[13] Jordan S. K., “Self-consistent statistical models for the gravity anomaly, vertical deflections, and undulation of the geoid”, J. Geophys. Res., 77:20 (1972), 3660–3670 | DOI

[14] Kailath T., Sayed A. H., Hassibi B., Linear Estimation, Prentice Hall, 2000

[15] Kwon J. H., Jekeli C., “A new approach for airborne vector gravimetry using GPS/INS”, J. Geodesy, 74 (2001), 690–700 | DOI

[16] Kwon J. H., Jekeli C., “The effect of stochastic gravity models in airborne vector gravimetry”, J. Geophysics, 67:3 (2002), 770–776 | DOI

[17] Schwartz K. P., What can airborne gravimetry contribute to geoid determination?, J. Geophys. Res., 101 (1996), 17873–17881 | DOI

[18] Shaokun C., Kaidong Z., Meiping W., “Improving airborne strapdown vector gravimetry using stabilized horizontal components”, J. Appl. Geophys., 98 (2013), 79–89 | DOI