Spectral analysis of the airborne vector gravimetry problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 33-57

Voir la notice de l'article provenant de la source Math-Net.Ru

Several possible approaches for airborne vector gravimetry are compared using the spectral analysis technique. The airborne gravimetry equations are reduced to a time-invariant form using a special averaging method. Then the Fourier transform is applied to the equations. The accuracy of each approach is determined as the power spectral density of the gravity Wiener estimate error. Numerical results for the accuracy of each approach are presented given a priori stochastic models for the gravity disturbance vector and measurement errors.
@article{FPM_2018_22_2_a2,
     author = {Yu. V. Bolotin and V. S. Vyazmin},
     title = {Spectral analysis of the airborne vector gravimetry problem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {33--57},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a2/}
}
TY  - JOUR
AU  - Yu. V. Bolotin
AU  - V. S. Vyazmin
TI  - Spectral analysis of the airborne vector gravimetry problem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 33
EP  - 57
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a2/
LA  - ru
ID  - FPM_2018_22_2_a2
ER  - 
%0 Journal Article
%A Yu. V. Bolotin
%A V. S. Vyazmin
%T Spectral analysis of the airborne vector gravimetry problem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 33-57
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a2/
%G ru
%F FPM_2018_22_2_a2
Yu. V. Bolotin; V. S. Vyazmin. Spectral analysis of the airborne vector gravimetry problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 33-57. http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a2/