Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2018_22_2_a2, author = {Yu. V. Bolotin and V. S. Vyazmin}, title = {Spectral analysis of the airborne vector gravimetry problem}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {33--57}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a2/} }
TY - JOUR AU - Yu. V. Bolotin AU - V. S. Vyazmin TI - Spectral analysis of the airborne vector gravimetry problem JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2018 SP - 33 EP - 57 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a2/ LA - ru ID - FPM_2018_22_2_a2 ER -
Yu. V. Bolotin; V. S. Vyazmin. Spectral analysis of the airborne vector gravimetry problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 33-57. http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a2/
[1] Bolotin Yu. V., Golovan A. A., “O metodakh inertsialnoi gravimetrii”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2013, no. 5, 59–67 | Zbl
[2] Bolotin Yu. V., Golovan A. A., Parusnikov N. A., Uravneniya aerogravimetrii. Algoritmy i rezultaty ispytanii, Izd-vo Tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, M., 2002
[3] Golovan A. A., Parusnikov N. A., Matematicheskie osnovy navigatsionnykh sistem, v. 1, Maks Press, M., 2011
[4] Peshekhonov V. G., Stepanov O. A., Avgustov L. I., Blazhnov B. A. i dr., Sovremennye metody i sredstva izmereniya parametrov gravitatsionnogo polya Zemli, TsNII «Elektropribor», SPb., 2017
[5] Becker D., Becker M., Leinen A., Zhao Y., “Estimability in strapdown airborne gravimetry”, Proc. of the 3rd Int. Gravity Field Service (IGFS) (Shanghai, China, June 30 — July 6, 2014), IAG Symposia, 144, eds. Jin S., Barzaghi R., Springer, 2015, 11–15
[6] Bolotin Yu. V., Vyazmin V. S., “Gravity anomaly estimation by airborne gravimetry data using LSE and minimax optimization and spherical wavelet expansion”, Gyroscopy Navigation, 6:4 (2015), 310–317 | DOI
[7] Bolotin Yu. V., Vyazmin V. S., “Gravity anomaly vector determination along flight trajectory and in terms of spherical wavelet coefficients using airborne gravimetry data”, Proc. of the 4th IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements, CSRI «Elektropribor», St. Petersburg, 2016, 83–86
[8] Dongkai D., Xingshu W., Dejun Z., Zongsheng H., “An improved method for dynamic measurement of deflections of the vertical based on the maintenance of attitude reference”, Sensors, 14:9 (2014), 16322–16342 | DOI
[9] Freeden W., Michel V., Multiscale Potential Theory With Applications to Geoscience, Birkhäuser, 2004 | MR | Zbl
[10] Von Frese R. B. R., Jones M. B., Kim J. W., Kim J. K., “Analysis of anomaly correlations”, J. Geophysics, 62:1 (1997), 342–351 | DOI | MR
[11] Jekeli C., “Airborne vector gravimetry using precise, position-aided inertial measurement units”, Bull. Geodesique, 69 (1995), 1–11 | DOI
[12] Jekeli C., “Potential theory and the static gravity field of the Earth”, Treatise on Geophysics, 3 (2015), 9–35 | DOI
[13] Jordan S. K., “Self-consistent statistical models for the gravity anomaly, vertical deflections, and undulation of the geoid”, J. Geophys. Res., 77:20 (1972), 3660–3670 | DOI
[14] Kailath T., Sayed A. H., Hassibi B., Linear Estimation, Prentice Hall, 2000
[15] Kwon J. H., Jekeli C., “A new approach for airborne vector gravimetry using GPS/INS”, J. Geodesy, 74 (2001), 690–700 | DOI
[16] Kwon J. H., Jekeli C., “The effect of stochastic gravity models in airborne vector gravimetry”, J. Geophysics, 67:3 (2002), 770–776 | DOI
[17] Schwartz K. P., What can airborne gravimetry contribute to geoid determination?, J. Geophys. Res., 101 (1996), 17873–17881 | DOI
[18] Shaokun C., Kaidong Z., Meiping W., “Improving airborne strapdown vector gravimetry using stabilized horizontal components”, J. Appl. Geophys., 98 (2013), 79–89 | DOI