Study of rapid goal-directed force upper limb movement
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 237-249.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a brief review of upper limb movement model and a detailed plan of experimental study of rapid goal-directed force upper limb movement during hammering nails. Experimental study is described. Statistical criteria for estimation of movement planarity are formulated. A conclusion about applicability of a planar model for calculation of upper limb's muscles' forces is drawn, based on results of a performed trial experimental study.
@article{FPM_2018_22_2_a15,
     author = {A. G. Yakushev and T. Yu. Bokov},
     title = {Study of rapid goal-directed force upper limb movement},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {237--249},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a15/}
}
TY  - JOUR
AU  - A. G. Yakushev
AU  - T. Yu. Bokov
TI  - Study of rapid goal-directed force upper limb movement
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 237
EP  - 249
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a15/
LA  - ru
ID  - FPM_2018_22_2_a15
ER  - 
%0 Journal Article
%A A. G. Yakushev
%A T. Yu. Bokov
%T Study of rapid goal-directed force upper limb movement
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 237-249
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a15/
%G ru
%F FPM_2018_22_2_a15
A. G. Yakushev; T. Yu. Bokov. Study of rapid goal-directed force upper limb movement. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 237-249. http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a15/

[1] Bernshtein N. A., O postroenii dvizhenii, Medgiz, M., 1947 | MR

[2] Zatsiorskii V. M., “Mekhanicheskie energozatraty pri dvizhenii cheloveka”, Sovrem. probl. biomekh., 1986, no. 3, 14–32

[3] Yakushev A. G., Dotsenko V. I., Kulakova L. A. i dr., “Opyt primeneniya koeffitsienta stabilizatsii vzora pri kompyuternom analize nistagma kak ob'ektivnogo integralnogo pokazatelya otsenki vestibulyarnoi funktsii”, Funktsion. diagnostika, 2010, no. 4, 41–51

[4] Alexander R. M., “A minimum energy cost hypothesis for human arm trajectories”, Biolog. Cybernet., 76 (1997), 97–105 | DOI | Zbl

[5] Ambike S., Schmiedeler J., “The leading joint hypothesis for spatial reaching arm motions”, Experiment. Brain Res., 224 (2013), 591–603 | DOI

[6] Dounskaia N., “The internal model and the leading joint hypothesis: implications for control of multi-joint movements”, Experiment. Brain Res., 166 (2005), 1–16 | DOI

[7] Fitts P. M., “The information capacity of the human motor system in controlling the amplitude of movement”, J. Experiment. Psychol., 47:6 (1954), 381–391 | DOI

[8] Flash T., “The control of hand equilibrium trajectory in multi-joint arm movements”, Biolog. Cybernet., 57 (1987), 257–274 | DOI | Zbl

[9] Flash T., Hogan N., “The coordination of arm movements: an experimentally confirmed mathematical model”, J. Neurosci., 5:7 (1985), 1688–1703 | DOI | MR

[10] Fligge N., McIntyre J., van der Smagt P., “Minimum jerk for human catching movement in 3D”, The Fourth IEEE RAS/EMBS Int. Conf. on Biomedical Robotics and Biomechatronics (24–27 June, 2012, Roma, Italy), 581–586

[11] Gomi H., Kawato M., “Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement”, Science, 272 (1996), 117–120 | DOI

[12] Harris C. V., Wolpert D. M., “Signal-dependent noise determines motor planning”, Nature, 394 (1998), 780–784 | DOI

[13] Jaitner T., Gawin W., “A mobile measure device for the analysis of highly dynamic movement techniques”, Procedia Eng., 2010, no. 2, 3005–3010 | DOI

[14] Laquanti F., Terzuolo C., Viviani P., “The law relating the kinematic and figural aspects of drawing movements”, Acta Psychol., 54 (1983), 115–130 | DOI

[15] Meyer D. E., Abrams R. A., Kornblum S., et al., “Optimality in human motor performance: ideal control of rapid aimed movement”, Psychol. Rev., 95:3 (1988), 340–370 | DOI

[16] Morasso P., Mussa Ivaldi F. A., “Trajectory formation and handwriting: a computational model”, Biolog. Cybernet., 45 (1982), 131–142 | DOI

[17] Nakano E., Imamizu H., Osu R., et al., “Quantative examinations of internal representations for arm planning trajectories: minimum commanded torque change model”, Amer. Physiol. Soc., 81:5 (1999), 2140–2155

[18] Uno Y., Kawato M., Suzuki R., “Formation and control of optimal trajectory in human multijoint arm movement”, Biolog. Cybernet., 61 (1989), 89–101

[19] Viviani P., Schneider R., “A developmental study of the relationship between geometry and kinematics in drawing movements”, J. Experiment. Psych., 17:1 (1991), 198–218

[20] Welford A. T., Fundamentals of Skill, Methuen, London, 1968

[21] Wright C. E., Meyer D. E., “Conditions for a linear speed-accuracy trade-off in aimed movements”, Quart. J. Experiment. Psych., 35A (1983), 279–296 | DOI