Steady-state motion of a balancing robot with two coaxial deformable wheels
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 181-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

At present, the theory of wheeled robotic systems is being actively developed. In modeling the motion of wheeled robots, one mostly uses the classical nonholonomic motion model, which does not take into account the slip of deformable wheels. Meanwhile, for robots with deformable wheels nonholonomic models can be inadequate for the design and analysis of control algorithms. This can be the case for statically unstable balancing robots with coaxial wheels, similar in design with such vehicles as Segway. Thus, modeling the motion of a two-wheeled robot taking into account the possibility of wheels slip, and analysis of applicability of simplified models are of interest. Such models can be used to develop new control algorithms in active maneuvering, and for preliminary estimates of robustness of algorithms designed using approximate nonholonomic models. This paper focuses on modeling the motion of balancing robots, on analyzing their steady-state motion and on possibilities of their stabilization. It is shown that for models with deformable wheels in the steady-state motion the body has a forward pitch. Such a pitch is not found in most nonholonomic models.
@article{FPM_2018_22_2_a11,
     author = {P. A. Kruchinin and A. A. Laskin},
     title = {Steady-state motion of a balancing robot with two coaxial deformable wheels},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {181--193},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a11/}
}
TY  - JOUR
AU  - P. A. Kruchinin
AU  - A. A. Laskin
TI  - Steady-state motion of a balancing robot with two coaxial deformable wheels
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 181
EP  - 193
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a11/
LA  - ru
ID  - FPM_2018_22_2_a11
ER  - 
%0 Journal Article
%A P. A. Kruchinin
%A A. A. Laskin
%T Steady-state motion of a balancing robot with two coaxial deformable wheels
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 181-193
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a11/
%G ru
%F FPM_2018_22_2_a11
P. A. Kruchinin; A. A. Laskin. Steady-state motion of a balancing robot with two coaxial deformable wheels. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 181-193. http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a11/

[1] Adamov B. I., “Stabilizatsiya dvizheniya segveya s parametricheskoi neopredelennostyu i povyshenie komfortabelnosti ezdy passazhira”, KhV konf. molodykh uchenykh «Navigatsiya i upravlenie dvizheniem», Tsentr. nauch.-issled. in-t «Elektropribor», SPb., 2013, 339–343

[2] Aliseichik A. P., Pavlovskii V. E., “Model i dinamicheskie otsenki upravlyaemosti i komfortabelnosti dvizheniya mnogokolesnogo mobilnogo robota”, Probl. upravleniya, 2013, no. 1, 70–78

[3] Andronov V. V., Zhuravlev V. F., Sukhoe trenie v zadachakh mekhaniki, R C Dynamics, M.–Izhevsk, 2010

[4] Belotelov V. N., Martynenko Yu. G., “Upravlenie prostranstvennym dvizheniem perevernutogo mayatnika, ustanovlennogo na kolesnoi pare”, Izv. RAN. MTT, 2006, no. 6, 10–28

[5] Vlakhova A. V., Matematicheskie modeli dvizheniya kolesnykh apparatov, Izhevskii in-t kompyut. issled., M.–Izhevsk, 2014

[6] Goverdovskii A. D., “Avtomaticheskoe upravlenie balansiruyuschim robotom”, Sb. nauch. tr. 15-ya molodezhnaya nauch.-tekhn. konf. «Naukoemkie tekhnologii i intellektualnye sistemy 2013», Izd-vo MGTU im. N. E. Baumana, M., 2013, 259–265

[7] Krasinskii A. Ya., Kayumova D. R., “O vliyanii deformiruemosti koles na dinamiku robota s differentsialnym privodom”, Nelineinaya dinamika, 7:4 (2011), 803–822 | MR

[8] Kruchinin P. A., Laskin A. A., “O modelyakh kacheniya deformiruemogo kolesa pri opisanii dvizheniya robotizirovannykh platform”, VII Vserossiiskoe soveschanie-seminar zav. kafedrami i prepodavatelei teoreticheskoi mekhaniki, robototekhniki, mekhatroniki vuzov Rossiiskoi Federatsii, Materialy soveschaniya, ed. V. A. Samsonov, Izd. tsentr «Master», Makhachkala, 2016, 62–65

[9] Martynenko Yu. G., “Upravlenie dvizheniem mobilnykh kolesnykh robotov”, Fundament. i prikl. matem., 11:8 (2005), 29–80

[10] Novozhilov I. V., Kruchinin P. A., Magomedov M. Kh., “Kontaktnye vzaimodeistviya kolesa s opornoi poverkhnostyu”, Sb. nauch.-metod. stat., Teoreticheskaya mekhanika, 23, Izd-vo Mosk. un-ta, M., 2000, 86–94

[11] Formalskii A. M., Upravlenie dvizheniem neustoichivykh ob'ektov, Fizmatlit, M., 2013

[12] Adhikari B., Gurung D., Kunwar G. S., Gyawali P., “FPGA control of a mobile inverted pendulum robot”, J. Inst. Eng., 8:1 (2011), 188–196

[13] Bature A. A., Buyamin S., Ahmad M. N., Muhammad M. A., “Comparison of controllers for balancing two wheeled inverted pendulum robot”, Int. J. Mech. Mechatron. Eng. IJMME-IJENS, 14:3 (2014), 62–68

[14] Jones D. R., Stol K. A., “Modelling and stability control of two-wheeled robots in low-traction environments”, Australasian Conf. on Robotics and Automation (2010, Brisbane, Australia), 1–9 | MR

[15] Li Ch., Gao X., Li K., “Smooth control the coaxial self-balance robot under impact disturbances”, Int. J. Adv. Robotic Syst., 8:2 (2011), 59–67

[16] Pacejka H. B., Tyre and Vehicle Dynamics, Butterworth-Heinemann, Oxford, 2006

[17] Salerno A., Angeles J., “The control of semi-autonomous two-wheeled robots undergoing large payload-variations”, Proc. IEEE Int. Conf. on Robotics and Automation, 2 (2004), 1740–1745

[18] Sharp R. S., Bettella M., “On the construction of a general numerical tyre shear force model from limited data”, Proc. of the Inst. of Mech. Eng., Pt. D: J. Automobile Eng., 217:3 (2003), 165–172 | DOI

[19] Yi J., Song D., Zhang J., Goodwin Z., “Adaptive trajectory tracking control of skid-steered mobile robots”, Proc. IEEE Int. Conf. on Robotics and Automation (Rome, Italy, 2007), 2605–2610