Mathematical modeling of the information process in the angular acceleration biosensor
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of the formation of output information in a biosensor of angular acceleration is presented. The functional and numerical parameters of the model have been determined by results of experiments made in 2001–2008. A comparison with the mathematical model of J. M. Goldberg and C. Fernandez (1971) describing the change of spike frequency of the primary afferent neuron spikes in response to an angular acceleration of the head as it turns round a vertical axis is carried out.
@article{FPM_2018_22_2_a0,
     author = {V. V. Aleksandrov and T. B. Alexandrova and R. Vega and V. A. Sadovnichii and G. Yu. Sidorenko and E. Soto and K. V. Tikhonova and N. E. Shulenina},
     title = {Mathematical modeling of the information process in the angular acceleration biosensor},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a0/}
}
TY  - JOUR
AU  - V. V. Aleksandrov
AU  - T. B. Alexandrova
AU  - R. Vega
AU  - V. A. Sadovnichii
AU  - G. Yu. Sidorenko
AU  - E. Soto
AU  - K. V. Tikhonova
AU  - N. E. Shulenina
TI  - Mathematical modeling of the information process in the angular acceleration biosensor
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 3
EP  - 18
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a0/
LA  - ru
ID  - FPM_2018_22_2_a0
ER  - 
%0 Journal Article
%A V. V. Aleksandrov
%A T. B. Alexandrova
%A R. Vega
%A V. A. Sadovnichii
%A G. Yu. Sidorenko
%A E. Soto
%A K. V. Tikhonova
%A N. E. Shulenina
%T Mathematical modeling of the information process in the angular acceleration biosensor
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 3-18
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a0/
%G ru
%F FPM_2018_22_2_a0
V. V. Aleksandrov; T. B. Alexandrova; R. Vega; V. A. Sadovnichii; G. Yu. Sidorenko; E. Soto; K. V. Tikhonova; N. E. Shulenina. Mathematical modeling of the information process in the angular acceleration biosensor. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 3-18. http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a0/

[1] Aleksandrov V. V., Aleksandrova T. B., Konovalenko I. S., Tikhonova K. V., “Vozmuschaemye stabilnye sistemy na ploskosti, 2”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2017, no. 1, 54–57

[2] Astakhova T. G., Matematicheskie modeli polukruzhnykh kanalov vestibulyarnoi sistemy, Dis.\ldots kand. fiz.-mat. nauk, M., 1990

[3] Orlov I. V., Vestibulyarnaya funktsiya, Nauka, SPb., 1998

[4] Shulenina N. E., Matematicheskoe modelirovanie kanalo-otolitovoi reaktsii na povorot vestibulyarnogo apparata v gravitatsionnom pole, Dis.\ldots kand. fiz.-mat. nauk, M., 2005

[5] Aleksandrov V. V., Aleksandrova T. B., Angeles Vaskes A., Vega R., Reies Romero M., Soto E., Tikhonova K. V., Shulenina N. E., “An output signal correction algorithm for vestibular mechanoreceptors to simulate passive turns”, Moscow Univ. Mech. Bull., 70:5 (2015), 130–134 | DOI

[6] Alexandrov V. V., Alexandrova T. B., Migunov S. S., “The mathematical model of the gravity-inertial mechanoreceptor”, Moscow Univ. Mech. Bull., 2006, no. 2, 59–64

[7] Alexandrov V. V., Alexandrova T. B., Vega R., Castillo Quiroz G., Angeles Vazquez A., Reyes Romero M., Soto E., “Information process in vestibular system”, WSEAS Trans. Biology Biomedicine, 4 (2007), 193–203

[8] Alexandrov V. V., Almanza A., Kulikovskaya N. V., Vega R., Alexandrova T. B., Shulenina N. E., Limón A., Soto E., “A mathematical model of the total current dynamics in hair cells”, Mathematical Modeling of Complex Information Processing Systems, Moscow State University, 2001, 26–41

[9] Alexandrov V. V., Mikhaleva E. Yu., Soto E., García Tamayo R., “Modification of Hodgkin–Huxley mathematical model for the primary neuron of vestibular apparatus”, Moscow Univ. Mech. Bull., 2006, no. 5, 65–68

[10] Correia M. J., Perachio A. A., Dickman J. D., et al., “Changes in monkey horizontal semicircular canal afferent responses after space flight”, J. Appl. Physiol., 73 (1992), 112–120 | DOI

[11] Fernandez C., Goldberg J. M., “Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations”, J. Neurophysiol., 34 (1971), 635–660 | DOI

[12] Fernandez C., Goldberg J. M., “Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system”, J. Neurophysiol., 34 (1971), 661–675 | DOI

[13] Fernandez C., Goldberg J. M., “Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III. Variations among units in their discharge properties”, J. Neurophysiol., 34 (1971), 676–683 | DOI

[14] Haque A., Angelaki D. E., Dickman J. D., “Spatial tuning and dynamics of vestibular semicircular canal afferents in rhesus monkeys”, Exp. Brain Res., 155:1 (2004), 81–90 | DOI

[15] Hudspeth A. J., Corey D. P., “Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli”, Proc. Natl. Acad. Sci. USA, 74 (1977), 2407–2411 | DOI

[16] Keen E. C., Hudspeth A. J., “Transfer characteristic of the hair cell's afferent synapse”, Proc. Natl. Acad. Sci. USA, 103 (2006), 5537–5542 | DOI

[17] Liu Jiayin, Shkel A. M., Niel K., Zeng Fan-Gang, “System design and experimental evaluation of a MEMS-based semicircular canal prosthesis”, First Int. IEEE EMBS Conf. on Neural Engineering, 2003, Conference Proceedings, 2003, 177–180

[18] Momani A., Cordullo F., “A review of the recent literature on the mathematical modeling of the vestibular system”, 2018 AIAA Modeling and Simulation Technologies Conf., AIAA SciTech Forum (09–12 January 2018, Kissimmee, Florida, USA)

[19] Sadovnichii V. A., Aleksandrov V. V., Aleksandrova T. B., Konik A. A., Pakhomov B. V., Sidorenko G. Y., Soto E., Tikhonova K. V., Shulenina N. E., “Mathematical simulation of correction of output signals from the gravitoinertial mechanoreceptor of a vestibular apparatus”, Moscow Univ. Mech. Bull., 68:5 (2013), 111–116 | DOI | MR | Zbl

[20] Sadovnichy V. A., Alexandrov V. V., Alexandrova T. B., Sidorenko G. Y., Shulenina N. E., “Generation of output information in the vertical semicircular canals”, Dokl. Biol. Sci., 441:1 (2011), 350–353 | DOI | MR

[21] Sadovnichii V. A., Alexandrov V. V., Alexandrova T. B., Vega R., Castillo Quiroz G., Reyes Romero M., Soto E., Shulenina N. E., “A mathematical model for the generation of output information in a gravitoinertial mechanoreceptor when moving in a sagittal plane”, Moscow Univ. Mech. Bull., 63:6 (2008), 53–60 | DOI

[22] Sadovnichii V. A., Alexandrov V. V., Alexandrova T. B., Vega R., Soto E., “Information process in the lateral semicircular canals”, Dokl. Biol. Sci., 436:1 (2011), 1–5 | DOI | Zbl

[23] Sadovnichii V. A., Alexandrov V. V., Soto E., Alexandrova T. B., Astakhova T. G., Vega R., Kulikovskaya N. V., Kurilov V. I., Migunov S. S., Shulenina N. E., “A mathematical model of the response of the semicircular canal and otolith to vestibular system rotation under gravity”, J. Gravit. Math. Sci., 146:3 (2007), 5938–5947 | DOI | MR

[24] Segal B. N., Outerbrige J. S., “Vestibular (semicircular canal) primary neurons in bullfrog: nonlinearity of individual and population response to rotation”, J. Neurophysiol., 47:4 (1982), 545–562 | DOI

[25] Segal B. N., Outerbrige J. S., “A nonlinear model of semicircular canal primary afferents in bullfrog”, J. Neurophysiol., 47:4 (1982), 563–578 | DOI

[26] Steinhausen W., “Über die Eigenbewegung der Cupula in den Bogengangsampullen des Labyrinths”, Pflüger's Arch. gesamte Physiol. Menschen Tiere, 229:1 (1932), 439–440 | DOI

[27] Vega R., Alexandrov V. V., Alexandrova T. B., Soto E., “Mathematical model of the cupula-endolymph system with morphological parameters for the axolol (Ambystoma tigrinum) semicircular canals”, The Open Medical Inf. J., 2 (2008), 138–148 | DOI