Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 111-126

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider functions $F=F(\lambda,f)$ with transformed Fourier series $\sum\limits^\infty_{n=1}\lambda_nA_n(x)$, where $\smash[t]{\sum\limits^\infty_{n=1}A_n(x)}$ is the Fourier series of a function $f$. Let $C_p$ be the space of $2\pi$-periodic $p$-absolutely continuous functions with $p$-variational norm. The estimates of best approximations of $F$ in $L^p$ in terms of best approximations of $f$ in $C_p$ are given. Also the dual problem for $F$ in $C_p$ and $f$ in $L^p$ is treated. In the important case of fractional derivative, the sharpness of estimates is established.
@article{FPM_2018_22_1_a5,
     author = {S. S. Volosivets and A. A. Tyuleneva},
     title = {Estimates of best approximations of transformed {Fourier} series in $L^p$-norm and $p$-variational norm},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {111--126},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a5/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - A. A. Tyuleneva
TI  - Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 111
EP  - 126
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a5/
LA  - ru
ID  - FPM_2018_22_1_a5
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A A. A. Tyuleneva
%T Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 111-126
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a5/
%G ru
%F FPM_2018_22_1_a5
S. S. Volosivets; A. A. Tyuleneva. Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 111-126. http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a5/