Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 111-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider functions $F=F(\lambda,f)$ with transformed Fourier series $\sum\limits^\infty_{n=1}\lambda_nA_n(x)$, where $\smash[t]{\sum\limits^\infty_{n=1}A_n(x)}$ is the Fourier series of a function $f$. Let $C_p$ be the space of $2\pi$-periodic $p$-absolutely continuous functions with $p$-variational norm. The estimates of best approximations of $F$ in $L^p$ in terms of best approximations of $f$ in $C_p$ are given. Also the dual problem for $F$ in $C_p$ and $f$ in $L^p$ is treated. In the important case of fractional derivative, the sharpness of estimates is established.
@article{FPM_2018_22_1_a5,
     author = {S. S. Volosivets and A. A. Tyuleneva},
     title = {Estimates of best approximations of transformed {Fourier} series in $L^p$-norm and $p$-variational norm},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {111--126},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a5/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - A. A. Tyuleneva
TI  - Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 111
EP  - 126
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a5/
LA  - ru
ID  - FPM_2018_22_1_a5
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A A. A. Tyuleneva
%T Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 111-126
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a5/
%G ru
%F FPM_2018_22_1_a5
S. S. Volosivets; A. A. Tyuleneva. Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 111-126. http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a5/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[2] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, 1956, 483–522 | Zbl

[3] Volosivets S. S., “Utochnennye teoremy teorii priblizheniya v prostranstve $p$-absolyutno nepreryvnykh funktsii”, Matem. zametki, 80:5 (2006), 701–711 | DOI | MR | Zbl

[4] Zigmund A., Trigonometricheskie ryady, v. 1, 2, Mir, M., 1965 | MR

[5] Kokilashvili V. M., “Ob obratnoi teoreme konstruktivnoi teorii funktsii v prostranstve $L^p$ ($1

\infty$)”, Tr. Tbilis. Matem. in-ta, 29 (1964), 183–189

[6] Konyushkov A. A., “Nailuchshee priblizhenie trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44:1 (1958), 53–84 | MR

[7] Terekhin A. P., “Priblizhenie funktsii ogranichennoi $p$-variatsii”, Izv. vyssh. uchebn. zaved. Matematika, 1965, no. 2, 171–187

[8] Terekhin A. P., “Integralnye svoistva gladkosti periodicheskikh funktsii ogranichennoi $p$-variatsii”, Matem. zametki, 2:3 (1967), 289–300 | Zbl

[9] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[10] Timan M. F., “Obratnye teoremy konstruktivnoi teorii funktsii v prostranstvakh $L_p$”, Matem. sb., 46:1 (1958), 125–132 | Zbl

[11] Khardi G., Littlvud Dzh., Polia G., Neravenstva, Izd. inostr. lit., M., 1948

[12] Aljančić S., “On the integral moduli of continuity in $L_p$ ($1

\infty$) of Fourier series with monotone coefficients”, Proc. Amer. Math. Soc., 17:5 (1966), 287–294 | MR | Zbl

[13] Love E. R., “A generalization of absolute continuity”, J. London Math. Soc., 26:1 (1951), 1–13 | DOI | MR | Zbl

[14] Simonov B. V., Tikhonov S. Yu., “On embedding of function classes defined by constructive characteristics”, Banach Center Publ., 72, 2006, 285–307 | DOI | MR | Zbl

[15] Tikhonov S., “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl

[16] Volosivets S. S., “Convergence of series of Fourier coefficients of $p$-absolutely continuous functions”, Anal. Math., 26:1 (2000), 63–80 | DOI | MR | Zbl

[17] Volosivets S. S., Tyuleneva A. A., “Generalized monotonicity of sequences and functions of bounded $p$-variation”, Acta Sci. Math. (Szeged), 82:1-2 (2016), 111–124 | DOI | MR | Zbl

[18] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, J. Math. Phys., 3 (1924), 72–94 | DOI | Zbl

[19] Young L. C., “An inequality of Hölder type connected with Stieltjes integration”, Acta Math., 67 (1936), 251–282 | DOI | MR