Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2018_22_1_a5, author = {S. S. Volosivets and A. A. Tyuleneva}, title = {Estimates of best approximations of transformed {Fourier} series in $L^p$-norm and $p$-variational norm}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {111--126}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a5/} }
TY - JOUR AU - S. S. Volosivets AU - A. A. Tyuleneva TI - Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2018 SP - 111 EP - 126 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a5/ LA - ru ID - FPM_2018_22_1_a5 ER -
%0 Journal Article %A S. S. Volosivets %A A. A. Tyuleneva %T Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm %J Fundamentalʹnaâ i prikladnaâ matematika %D 2018 %P 111-126 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a5/ %G ru %F FPM_2018_22_1_a5
S. S. Volosivets; A. A. Tyuleneva. Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 111-126. http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a5/
[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961
[2] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, 1956, 483–522 | Zbl
[3] Volosivets S. S., “Utochnennye teoremy teorii priblizheniya v prostranstve $p$-absolyutno nepreryvnykh funktsii”, Matem. zametki, 80:5 (2006), 701–711 | DOI | MR | Zbl
[4] Zigmund A., Trigonometricheskie ryady, v. 1, 2, Mir, M., 1965 | MR
[5] Kokilashvili V. M., “Ob obratnoi teoreme konstruktivnoi teorii funktsii v prostranstve $L^p$ ($1
\infty$)”, Tr. Tbilis. Matem. in-ta, 29 (1964), 183–189[6] Konyushkov A. A., “Nailuchshee priblizhenie trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44:1 (1958), 53–84 | MR
[7] Terekhin A. P., “Priblizhenie funktsii ogranichennoi $p$-variatsii”, Izv. vyssh. uchebn. zaved. Matematika, 1965, no. 2, 171–187
[8] Terekhin A. P., “Integralnye svoistva gladkosti periodicheskikh funktsii ogranichennoi $p$-variatsii”, Matem. zametki, 2:3 (1967), 289–300 | Zbl
[9] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960
[10] Timan M. F., “Obratnye teoremy konstruktivnoi teorii funktsii v prostranstvakh $L_p$”, Matem. sb., 46:1 (1958), 125–132 | Zbl
[11] Khardi G., Littlvud Dzh., Polia G., Neravenstva, Izd. inostr. lit., M., 1948
[12] Aljančić S., “On the integral moduli of continuity in $L_p$ ($1
\infty$) of Fourier series with monotone coefficients”, Proc. Amer. Math. Soc., 17:5 (1966), 287–294 | MR | Zbl[13] Love E. R., “A generalization of absolute continuity”, J. London Math. Soc., 26:1 (1951), 1–13 | DOI | MR | Zbl
[14] Simonov B. V., Tikhonov S. Yu., “On embedding of function classes defined by constructive characteristics”, Banach Center Publ., 72, 2006, 285–307 | DOI | MR | Zbl
[15] Tikhonov S., “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl
[16] Volosivets S. S., “Convergence of series of Fourier coefficients of $p$-absolutely continuous functions”, Anal. Math., 26:1 (2000), 63–80 | DOI | MR | Zbl
[17] Volosivets S. S., Tyuleneva A. A., “Generalized monotonicity of sequences and functions of bounded $p$-variation”, Acta Sci. Math. (Szeged), 82:1-2 (2016), 111–124 | DOI | MR | Zbl
[18] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, J. Math. Phys., 3 (1924), 72–94 | DOI | Zbl
[19] Young L. C., “An inequality of Hölder type connected with Stieltjes integration”, Acta Math., 67 (1936), 251–282 | DOI | MR