Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2018_22_1_a4, author = {A. A. Vasil'eva}, title = {Criterion for the existence of a $1${-Lipschitz} selection from the metric projection onto the set of continuous selections from a~multivalued mapping}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {99--110}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a4/} }
TY - JOUR AU - A. A. Vasil'eva TI - Criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set of continuous selections from a~multivalued mapping JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2018 SP - 99 EP - 110 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a4/ LA - ru ID - FPM_2018_22_1_a4 ER -
%0 Journal Article %A A. A. Vasil'eva %T Criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set of continuous selections from a~multivalued mapping %J Fundamentalʹnaâ i prikladnaâ matematika %D 2018 %P 99-110 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a4/ %G ru %F FPM_2018_22_1_a4
A. A. Vasil'eva. Criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set of continuous selections from a~multivalued mapping. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 99-110. http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a4/
[1] Alimov A. R., Tsarkov I. G., “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1(427) (2016), 3–84 | DOI | MR | Zbl
[2] Berdyshev V. I., “O module nepreryvnosti operatora nailuchshego priblizheniya”, Matem. zametki, 15:5 (1974), 797–808 | Zbl
[3] Berdyshev V. I., “Nepreryvnaya zavisimost elementa, realizuyuschego minimum vypuklogo funktsionala, ot mnozhestva dopustimykh elementov”, Matem. zametki, 19:4 (1976), 501–512 | MR | Zbl
[4] Berdyshev V. I., “Nepreryvnost operatora metricheskogo proektirovaniya i ego obobschenii”, Tr. konf. «Konstruktivnaya teoriya funktsii '77» (Sofiya, 1980), 29–34 | Zbl
[5] Vasileva A. A., “Zamknutye promezhutki v vektornoznachnykh funktsionalnykh prostranstvakh i ikh approksimativnye svoistva”, Izv. RAN. Ser. matem., 68:4 (2004), 75–116 | DOI | MR | Zbl
[6] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6(174) (1973), 3–66 | MR | Zbl
[7] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1968 | MR
[8] Marinov A. V., “Otsenki ustoichivosti nepreryvnoi selektsii dlya metricheskoi pochti-proektsii”, Matem. zametki, 55:4 (1994), 47–53 | Zbl
[9] Khavinson S. Ya., “Approksimativnye svoistva nekotorykh mnozhestv v prostranstvakh nepreryvnykh funktsii”, Analysis Math., 29 (2003), 87–105 | DOI
[10] Daniel J. W., “The continuity of metric projections as functions of the data”, J. Approx. Theory, 12:3 (1974), 234–240 | DOI | MR
[11] Michael E., “Continuous selections”, Ann. Math. Ser. 2, 63:2 (1956), 361–381 | DOI | MR
[12] Repovš D., Semenov P. V., Continuous Selections of Multivalued Mappings, Kluwer Academic, Dordrecht, 1998 | MR | Zbl