Criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set of continuous selections from a~multivalued mapping
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 99-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S_F$ be the set of continuous bounded selections from the set-valued mapping $F\colon T \rightarrow 2^H$ with nonempty convex closed values; here $T$ is a paracompact Hausdorff topological space, and $H$ is a Hilbert space. In this paper, we obtain a criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set $S_F$ in $C(T,H)$.
@article{FPM_2018_22_1_a4,
     author = {A. A. Vasil'eva},
     title = {Criterion for the existence of a $1${-Lipschitz} selection from the metric projection onto the set of continuous selections from a~multivalued mapping},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a4/}
}
TY  - JOUR
AU  - A. A. Vasil'eva
TI  - Criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set of continuous selections from a~multivalued mapping
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 99
EP  - 110
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a4/
LA  - ru
ID  - FPM_2018_22_1_a4
ER  - 
%0 Journal Article
%A A. A. Vasil'eva
%T Criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set of continuous selections from a~multivalued mapping
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 99-110
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a4/
%G ru
%F FPM_2018_22_1_a4
A. A. Vasil'eva. Criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set of continuous selections from a~multivalued mapping. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 99-110. http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a4/

[1] Alimov A. R., Tsarkov I. G., “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1(427) (2016), 3–84 | DOI | MR | Zbl

[2] Berdyshev V. I., “O module nepreryvnosti operatora nailuchshego priblizheniya”, Matem. zametki, 15:5 (1974), 797–808 | Zbl

[3] Berdyshev V. I., “Nepreryvnaya zavisimost elementa, realizuyuschego minimum vypuklogo funktsionala, ot mnozhestva dopustimykh elementov”, Matem. zametki, 19:4 (1976), 501–512 | MR | Zbl

[4] Berdyshev V. I., “Nepreryvnost operatora metricheskogo proektirovaniya i ego obobschenii”, Tr. konf. «Konstruktivnaya teoriya funktsii '77» (Sofiya, 1980), 29–34 | Zbl

[5] Vasileva A. A., “Zamknutye promezhutki v vektornoznachnykh funktsionalnykh prostranstvakh i ikh approksimativnye svoistva”, Izv. RAN. Ser. matem., 68:4 (2004), 75–116 | DOI | MR | Zbl

[6] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6(174) (1973), 3–66 | MR | Zbl

[7] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1968 | MR

[8] Marinov A. V., “Otsenki ustoichivosti nepreryvnoi selektsii dlya metricheskoi pochti-proektsii”, Matem. zametki, 55:4 (1994), 47–53 | Zbl

[9] Khavinson S. Ya., “Approksimativnye svoistva nekotorykh mnozhestv v prostranstvakh nepreryvnykh funktsii”, Analysis Math., 29 (2003), 87–105 | DOI

[10] Daniel J. W., “The continuity of metric projections as functions of the data”, J. Approx. Theory, 12:3 (1974), 234–240 | DOI | MR

[11] Michael E., “Continuous selections”, Ann. Math. Ser. 2, 63:2 (1956), 361–381 | DOI | MR

[12] Repovš D., Semenov P. V., Continuous Selections of Multivalued Mappings, Kluwer Academic, Dordrecht, 1998 | MR | Zbl