Criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set of continuous selections from a~multivalued mapping
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 99-110
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $S_F$ be the set of continuous bounded selections from the set-valued mapping $F\colon T \rightarrow 2^H$ with nonempty convex closed values; here $T$ is a paracompact Hausdorff topological space, and $H$ is a Hilbert space. In this paper, we obtain a criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set $S_F$ in $C(T,H)$.
@article{FPM_2018_22_1_a4,
author = {A. A. Vasil'eva},
title = {Criterion for the existence of a $1${-Lipschitz} selection from the metric projection onto the set of continuous selections from a~multivalued mapping},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {99--110},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a4/}
}
TY - JOUR AU - A. A. Vasil'eva TI - Criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set of continuous selections from a~multivalued mapping JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2018 SP - 99 EP - 110 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a4/ LA - ru ID - FPM_2018_22_1_a4 ER -
%0 Journal Article %A A. A. Vasil'eva %T Criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set of continuous selections from a~multivalued mapping %J Fundamentalʹnaâ i prikladnaâ matematika %D 2018 %P 99-110 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a4/ %G ru %F FPM_2018_22_1_a4
A. A. Vasil'eva. Criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set of continuous selections from a~multivalued mapping. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 99-110. http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a4/