Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2018_22_1_a1, author = {M. V. Balashov}, title = {The {Lipschitz} property of the metric projection in the {Hilbert} space}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {13--29}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a1/} }
M. V. Balashov. The Lipschitz property of the metric projection in the Hilbert space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 13-29. http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a1/
[1] Balashov M. V., “Maksimizatsii funktsii s nepreryvnym po Lipshitsu gradientom”, Fundament. i prikl. matem., 18:5 (2013), 17–25
[2] Balashov M. V., Ivanov G. E., “Svoistva metricheskoi proektsii na mnozhestvo, slabo vypukloe po Vialyu, i parametrizatsiya mnogoznachnykh otobrazhenii so slabo vypuklymi znacheniyami”, Matem. zametki, 80:4 (2006), 483–489 | DOI | MR | Zbl
[3] Balashov M. V., Ivanov G. E., “Slabo vypuklye i proksimalno gladkie mnozhestva v banakhovykh prostranstvakh”, Izv. RAN. Ser. matem., 73:3 (2009), 23–66 | DOI | MR | Zbl
[4] Balashov M. V., Polovinkin E. S., “$M$-silno vypuklye podmnozhestva i ikh porozhdayuschie mnozhestva”, Matem. sb., 191:1 (2000), 27–64 | DOI | MR | Zbl
[5] Vlasov L. P., “O chebyshevskikh i approksimativno vypuklykh mnozhestvakh”, Matem. zametki, 2:2 (1967), 191–200 | Zbl
[6] Danford N., Shvarts Dzh., Lineinye operatory, v. 1, Obschaya teoriya, Izd. inostr. lit., M., 1962
[7] Nesterov Yu., Vvedenie v vypukluyu optimizatsiyu, MTsMNO, M., 2010
[8] Polovinkin E. S., “Silno vypuklyi analiz”, Matem. sb., 187:2 (1996), 103–130 | DOI | MR | Zbl
[9] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007
[10] Abatzoglou T. J., “The minimum norm projection on $C^{2}$-manofolds in $\mathbb R^{n}$”, Trans. Amer. Math. Soc., 243 (1978), 115–122 | MR
[11] Abatzoglou T. J., “The Lipschits continuity of the metric projection”, J. Approx. Theory, 26 (1979), 212–218 | DOI | MR | Zbl
[12] Balashov M. V., “Proximal smoothness of a set with the Lipschitz metric projection”, J. Math. Anal. Appl., 406:1 (2013), 360–363 | DOI | MR | Zbl
[13] Balashov M. V., “About the gradient projection algorithm for a strongly convex function and a proximally smooth set”, J. Convex Anal., 24:2 (2017), 493–500 | MR | Zbl
[14] Balashov M. V., Golubev M. O., “About the Lipschitz property of the metric projection in the Hilbert space”, J. Math. Anal. Appl., 394 (2012), 545–551 | DOI | MR | Zbl
[15] Balashov M. V., Repovš D., “Uniformly convex subsets of the Hilbert space with modulus of convexity of the second order”, J. Math. Anal. Appl., 377:2 (2011), 754–761 | DOI | MR | Zbl
[16] Bernard F., Thibault L., Zlateva N., “Characterization of proximal regular sets in super reflexive Banach spaces”, J. Convex Anal., 13:3-4 (2006), 525–559 | MR | Zbl
[17] Canino A., “On $p$-convex sets and geodesics”, J. Differ. Equ., 75 (1988), 118–157 | DOI | MR | Zbl
[18] Clarke F. H., Stern R. J., Wolenski P. R., “Proximal smoothness and lower-$C^{2}$ property”, J. Convex Anal., 2:1-2 (1995), 117–144 | MR | Zbl
[19] Daniel J. W., “The continuity of metric projection as function of data”, J. Approx. Theory, 12:3 (1974), 234–240 | DOI | MR
[20] Frankowska H., Olech Ch., “R-convexity of the integral of the set-valued functions”, Contributions to Analysis and Geometry, John Hopkins Univ. Press, Baltimore, 1981, 117–129 | MR
[21] Lindenstrauss J., “On nonlinear projection in Banach spaces”, Michigan Math. J., 11:3 (1964), 263–287 | DOI | MR | Zbl
[22] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. I, Sequence Spaces, Springer, New York, 1977 | MR | Zbl
[23] Phelps R. R., “Convex sets and nearest points”, Proc. Amer. Math. Soc., 8 (1957), 790–797 | DOI | MR | Zbl
[24] Poliquin R. A., Rockafellar R. T., Thibault L., “Local differentiability of distance functions”, Trans. Amer. Math. Soc., 352 (2000), 5231–5249 | DOI | MR | Zbl
[25] Stechkin S. B., “Approximative properties of sets in linear normed spaces”, Rev. Math. Pures Appl., 8:1 (1963), 5–18 | MR | Zbl
[26] Vial J.-P., “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl