The Lipschitz property of the metric projection in the Hilbert space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 13-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the survey, we consider the metric projection operator from the real Hilbert space onto a closed subset. We discuss the question: when this operator is Lipschitz continuous? Firstly, we consider the class of strongly convex sets of radius $R$, i.e., each set from this class is nonempty intersection of closed balls of radius $R$. We prove that the restriction of the metric projection operator on the complement of the neighborhood of radius $r$ of a strongly convex set of radius $R$ is Lipschitz continuous with the Lipschitz constant $C=R/(r+R)\in (0,1)$. Vice versa, if for a closed convex set from the real Hilbert space the metric projection operator is Lipschitz continuous with the Lipschitz constant $C\in (0,1)$ on the complement of the neighborhood of radius $r$ of the set then the set is strongly convex of radius $R=Cr/(1-C)$. It is known that if a closed subset of a real Hilbert space has the Lipschitz continuous metric projection in some neighborhood then this set is proximally smooth. We show that if a closed subset of the real Hilbert space has the Lipschitz continuous metric projection on the neighborhood of radius $r$ with the Lipschitz constant $C>1$, then this set is proximally smooth with constant of proximal smoothness $R=Cr/(C-1)$, and, if constant $C$ is the smallest possible, then constant $R$ is the largest possible. We apply obtained results to the question concerning the rate of convergence for the gradient projection algorithm.
@article{FPM_2018_22_1_a1,
     author = {M. V. Balashov},
     title = {The {Lipschitz} property of the metric projection in the {Hilbert} space},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {13--29},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a1/}
}
TY  - JOUR
AU  - M. V. Balashov
TI  - The Lipschitz property of the metric projection in the Hilbert space
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 13
EP  - 29
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a1/
LA  - ru
ID  - FPM_2018_22_1_a1
ER  - 
%0 Journal Article
%A M. V. Balashov
%T The Lipschitz property of the metric projection in the Hilbert space
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 13-29
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a1/
%G ru
%F FPM_2018_22_1_a1
M. V. Balashov. The Lipschitz property of the metric projection in the Hilbert space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 13-29. http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a1/

[1] Balashov M. V., “Maksimizatsii funktsii s nepreryvnym po Lipshitsu gradientom”, Fundament. i prikl. matem., 18:5 (2013), 17–25

[2] Balashov M. V., Ivanov G. E., “Svoistva metricheskoi proektsii na mnozhestvo, slabo vypukloe po Vialyu, i parametrizatsiya mnogoznachnykh otobrazhenii so slabo vypuklymi znacheniyami”, Matem. zametki, 80:4 (2006), 483–489 | DOI | MR | Zbl

[3] Balashov M. V., Ivanov G. E., “Slabo vypuklye i proksimalno gladkie mnozhestva v banakhovykh prostranstvakh”, Izv. RAN. Ser. matem., 73:3 (2009), 23–66 | DOI | MR | Zbl

[4] Balashov M. V., Polovinkin E. S., “$M$-silno vypuklye podmnozhestva i ikh porozhdayuschie mnozhestva”, Matem. sb., 191:1 (2000), 27–64 | DOI | MR | Zbl

[5] Vlasov L. P., “O chebyshevskikh i approksimativno vypuklykh mnozhestvakh”, Matem. zametki, 2:2 (1967), 191–200 | Zbl

[6] Danford N., Shvarts Dzh., Lineinye operatory, v. 1, Obschaya teoriya, Izd. inostr. lit., M., 1962

[7] Nesterov Yu., Vvedenie v vypukluyu optimizatsiyu, MTsMNO, M., 2010

[8] Polovinkin E. S., “Silno vypuklyi analiz”, Matem. sb., 187:2 (1996), 103–130 | DOI | MR | Zbl

[9] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007

[10] Abatzoglou T. J., “The minimum norm projection on $C^{2}$-manofolds in $\mathbb R^{n}$”, Trans. Amer. Math. Soc., 243 (1978), 115–122 | MR

[11] Abatzoglou T. J., “The Lipschits continuity of the metric projection”, J. Approx. Theory, 26 (1979), 212–218 | DOI | MR | Zbl

[12] Balashov M. V., “Proximal smoothness of a set with the Lipschitz metric projection”, J. Math. Anal. Appl., 406:1 (2013), 360–363 | DOI | MR | Zbl

[13] Balashov M. V., “About the gradient projection algorithm for a strongly convex function and a proximally smooth set”, J. Convex Anal., 24:2 (2017), 493–500 | MR | Zbl

[14] Balashov M. V., Golubev M. O., “About the Lipschitz property of the metric projection in the Hilbert space”, J. Math. Anal. Appl., 394 (2012), 545–551 | DOI | MR | Zbl

[15] Balashov M. V., Repovš D., “Uniformly convex subsets of the Hilbert space with modulus of convexity of the second order”, J. Math. Anal. Appl., 377:2 (2011), 754–761 | DOI | MR | Zbl

[16] Bernard F., Thibault L., Zlateva N., “Characterization of proximal regular sets in super reflexive Banach spaces”, J. Convex Anal., 13:3-4 (2006), 525–559 | MR | Zbl

[17] Canino A., “On $p$-convex sets and geodesics”, J. Differ. Equ., 75 (1988), 118–157 | DOI | MR | Zbl

[18] Clarke F. H., Stern R. J., Wolenski P. R., “Proximal smoothness and lower-$C^{2}$ property”, J. Convex Anal., 2:1-2 (1995), 117–144 | MR | Zbl

[19] Daniel J. W., “The continuity of metric projection as function of data”, J. Approx. Theory, 12:3 (1974), 234–240 | DOI | MR

[20] Frankowska H., Olech Ch., “R-convexity of the integral of the set-valued functions”, Contributions to Analysis and Geometry, John Hopkins Univ. Press, Baltimore, 1981, 117–129 | MR

[21] Lindenstrauss J., “On nonlinear projection in Banach spaces”, Michigan Math. J., 11:3 (1964), 263–287 | DOI | MR | Zbl

[22] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. I, Sequence Spaces, Springer, New York, 1977 | MR | Zbl

[23] Phelps R. R., “Convex sets and nearest points”, Proc. Amer. Math. Soc., 8 (1957), 790–797 | DOI | MR | Zbl

[24] Poliquin R. A., Rockafellar R. T., Thibault L., “Local differentiability of distance functions”, Trans. Amer. Math. Soc., 352 (2000), 5231–5249 | DOI | MR | Zbl

[25] Stechkin S. B., “Approximative properties of sets in linear normed spaces”, Rev. Math. Pures Appl., 8:1 (1963), 5–18 | MR | Zbl

[26] Vial J.-P., “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl