Bounded contractibility of strict suns in three-dimensional spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

A strict sun in a finite-dimensional (asymmetric) normed space $X$, $\operatorname {dim}X \le 3$, is shown to be $P$-contractible, $P$-solar, $\mathring B $-infinitely connected, $\mathring B $-contractible, $\mathring B $-retract, and having a continuous additive (multiplicative) $\varepsilon$-selection for any $\varepsilon > 0$. A $P$-acyclic subset of a three-dimensional space is shown to have a continuous $\varepsilon$-selection for any $\varepsilon > 0$. For the dimension $3$ the well-known Tsar'kov's characterization of spaces, in which any bounded Chebyshev set is convex, is extended to the case of strict suns.
@article{FPM_2018_22_1_a0,
     author = {A. R. Alimov},
     title = {Bounded contractibility of strict suns in three-dimensional spaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Bounded contractibility of strict suns in three-dimensional spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 3
EP  - 11
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a0/
LA  - ru
ID  - FPM_2018_22_1_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Bounded contractibility of strict suns in three-dimensional spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 3-11
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a0/
%G ru
%F FPM_2018_22_1_a0
A. R. Alimov. Bounded contractibility of strict suns in three-dimensional spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a0/

[1] Alimov A. R., “Lokalnaya solnechnost solnts v lineinykh normirovannykh prostranstvakh”, Fundament. i prikl. matem., 17:7 (2012), 3–14

[2] Alimov A. R., “Vypuklost ogranichennykh chebyshevskikh mnozhestv v konechnomernykh prostranstvakh s nesimmetrichnoi normoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4(2) (2014), 489–497 | Zbl

[3] Alimov A. R., Tsarkov I. G., “Svyaznost i drugie geometricheskie svoistva solnts i chebyshevskikh mnozhestv”, Fundament. i prikl. matem., 19:4 (2014), 21–91

[4] Alimov A. R., Tsarkov I. G., “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1(427) (2016), 3–84 | DOI | MR | Zbl

[5] Balashov M. V., Ivanov G. E., “Slabo vypuklye i proksimalno gladkie mnozhestva v banakhovykh prostranstvakh”, Izv. RAN. Ser. matem., 73:3 (2009), 23–66 | DOI | MR | Zbl

[6] Bogatyi S. A., “Topologicheskaya teorema Khelli”, Fundament. i prikl. matem., 8:2 (2002), 365–405 | MR | Zbl

[7] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6(174) (1973), 3–66 | MR | Zbl

[8] Flerov A. A., Izbrannye geometricheskie svoistva mnozhestv s konechnoznachnoi metricheskoi proektsiei, Dis. \ldots kand. fiz.-mat. nauk, M., 2016 | Zbl

[9] Tsarkov I. G., “Ogranichennye chebyshevskie mnozhestva v konechnomernykh banakhovykh prostranstvakh”, Matem. zametki, 36:1 (1984), 73–87 | Zbl

[10] Tsarkov I. G., “Lokalnaya i globalnaya nepreryvnaya $\varepsilon$-vyborka”, Izv. RAN. Ser. matem., 80:2 (2016), 165–184 | DOI | MR | Zbl

[11] Tsarkov I. G., “Nepreryvnaya $\varepsilon$-vyborka”, Matem. sb., 207:2 (2016), 123–142 | DOI | Zbl

[12] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Springer, Dordrecht, 2006 | MR | Zbl

[13] Ivanov G. E., “Continuity and selections of the intersection operator applied to nonconvex sets”, J. Convex Analysis, 22:4 (2015), 939–962 | MR

[14] Kamal A., “On proximinality and sets of operators. I. Best approximation by finite rank operators”, J. Approx. Theor., 47 (1986), 132–145 | DOI | MR | Zbl

[15] Kryszewski W., “Graph-approximation of set-valued maps on noncompact domains”, Topol. Appl., 83 (1998), 1–21 | DOI | MR | Zbl

[16] Park S., “Some coincidence theorems on acyclic multifunctions and applications to KKM theory”, Fixed Point Theory and Applications, ed. K. K. Tan, World Sci. Press, London, 1992, 248–277 | MR