Bounded contractibility of strict suns in three-dimensional spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

A strict sun in a finite-dimensional (asymmetric) normed space $X$, $\operatorname {dim}X \le 3$, is shown to be $P$-contractible, $P$-solar, $\mathring B $-infinitely connected, $\mathring B $-contractible, $\mathring B $-retract, and having a continuous additive (multiplicative) $\varepsilon$-selection for any $\varepsilon > 0$. A $P$-acyclic subset of a three-dimensional space is shown to have a continuous $\varepsilon$-selection for any $\varepsilon > 0$. For the dimension $3$ the well-known Tsar'kov's characterization of spaces, in which any bounded Chebyshev set is convex, is extended to the case of strict suns.
@article{FPM_2018_22_1_a0,
     author = {A. R. Alimov},
     title = {Bounded contractibility of strict suns in three-dimensional spaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Bounded contractibility of strict suns in three-dimensional spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 3
EP  - 11
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a0/
LA  - ru
ID  - FPM_2018_22_1_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Bounded contractibility of strict suns in three-dimensional spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 3-11
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a0/
%G ru
%F FPM_2018_22_1_a0
A. R. Alimov. Bounded contractibility of strict suns in three-dimensional spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a0/