Bounded contractibility of strict suns in three-dimensional spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 3-11
Voir la notice de l'article provenant de la source Math-Net.Ru
A strict sun in a finite-dimensional (asymmetric) normed space $X$, $\operatorname {dim}X \le 3$, is shown to be $P$-contractible, $P$-solar, $\mathring B $-infinitely connected, $\mathring B $-contractible, $\mathring B $-retract, and having a continuous additive (multiplicative) $\varepsilon$-selection for any $\varepsilon > 0$. A $P$-acyclic subset of a three-dimensional space is shown to have a continuous $\varepsilon$-selection for any $\varepsilon > 0$. For the dimension $3$ the well-known Tsar'kov's characterization of spaces, in which any bounded Chebyshev set is convex, is extended to the case of strict suns.
@article{FPM_2018_22_1_a0,
author = {A. R. Alimov},
title = {Bounded contractibility of strict suns in three-dimensional spaces},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--11},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a0/}
}
A. R. Alimov. Bounded contractibility of strict suns in three-dimensional spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a0/