The rational homology ring of the based loop space of the gauge groups and the spaces of connections on a~four-manifold
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 205-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide a rational-homotopic proof that the ranks of the homotopy groups of a simply connected four-manifold depend only on its second Betti number. We also consider the based loop spaces of the gauge groups and the spaces of connections of a simply connected four-manifold and, using the models from rational homotopy theory, we obtain explicit formulas for their rational Pontryagin homology rings.
@article{FPM_2016_21_6_a9,
     author = {S. Terzi\'c},
     title = {The rational homology ring of the based loop space of the gauge groups and the spaces of connections on a~four-manifold},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {205--215},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a9/}
}
TY  - JOUR
AU  - S. Terzić
TI  - The rational homology ring of the based loop space of the gauge groups and the spaces of connections on a~four-manifold
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 205
EP  - 215
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a9/
LA  - ru
ID  - FPM_2016_21_6_a9
ER  - 
%0 Journal Article
%A S. Terzić
%T The rational homology ring of the based loop space of the gauge groups and the spaces of connections on a~four-manifold
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 205-215
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a9/
%G ru
%F FPM_2016_21_6_a9
S. Terzić. The rational homology ring of the based loop space of the gauge groups and the spaces of connections on a~four-manifold. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 205-215. http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a9/

[1] Babenko I. K., “Ob analiticheskikh svoistvakh ryadov Puankare prostranstv petel”, Matem. zametki, 27:5 (1980), 751–765 | MR | Zbl

[2] Basu Sa., Basu So., Homotopy groups and periodic geodesics of closed $4$-manifolds, arXiv: 1303.3328 | MR

[3] Beben P., Theriault S., “The loop space homotopy type of simply-connected four-manifolds and their generalization”, Adv. Math., 262 (2014), 213–238 | DOI | MR | Zbl

[4] Donaldson S. K., Kronheimer P. B., The Geometry of Four-Manifolds, Oxford Univ. Press, Oxford, 1990 | MR | Zbl

[5] Duan H., Liang Ch., “Circle bundles over $4$-manifolds”, Arch. Math. (Basel), 85:3 (2005), 278–282 | DOI | MR | Zbl

[6] Félix Y., Halperin S., Thomas J.-C., Rational Homotopy Theory, Grad. Texts Math., 205, Springer, Berlin, 2001 | MR

[7] Mandelbaum R., “Four-dimensional topology: an introduction”, Bull. Am. Math. Soc., 2 (1980), 1–159 | DOI | MR | Zbl

[8] Milnor J., “On simply connected $4$-manifolds”, Symp. Int. de Topologia Algebraica (1958), 122–128 | MR | Zbl

[9] Milnor J., Moore J., “On the structure of Hopf algebras”, Ann. Math., 81 (1965), 211–264 | DOI | MR | Zbl

[10] Ohta H., “On the fundamental groups of moduli spaces of irreducible $\mathrm{SU}(2)$-connections over closed $4$-manifolds”, Proc. Japan Acad. Ser. A, 66:3 (1990), 89–92 | DOI | MR | Zbl

[11] Quillen D., “Rational homotopy theory”, Ann. Math., 90 (1969), 205–295 | DOI | MR | Zbl

[12] Singer I. M., “Some remarks on the Gribov ambiguity”, Commun. Math. Phys., 60 (1978), 7–12 | DOI | MR | Zbl

[13] Sullivan D., “Infinitesimal computations in topology”, Publ. Math. de l'IHÉS, 47, 1977, 269–331 | DOI | MR | Zbl

[14] Terzić S., “On rational homotopy of four-manifolds”, Contemporary Geometry and Related Topics, World Scientific, River Edge, 2004, 375–388 | DOI | MR | Zbl

[15] Terzić S., “The rational topology of gauge groups and of spaces of connections”, Compositio Math., 141:1 (2005), 262–270 | DOI | MR | Zbl

[16] Whitehead J. H. C., “On simply connected $4$-dimensional polyhedra”, Comm. Math. Helvet., 22 (1949), 49–92 | DOI | MR