Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_6_a4, author = {N. P. Dolbilin}, title = {Delone sets in $\mathbb{R}^3$: regularity conditions}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {115--141}, publisher = {mathdoc}, volume = {21}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a4/} }
N. P. Dolbilin. Delone sets in $\mathbb{R}^3$: regularity conditions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 115-141. http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a4/
[1] Delone B. N., Dolbilin N. P., Shtogrin M. I., Galiulin R. V., “Lokalnyi kriterii pravilnosti sistemy tochek”, DAN SSSR, 227:1 (1976), 19–21 | MR | Zbl
[2] Dolbilin N. P., “Kriterii kristalla i lokalno antipodalnye mnozhestva Delone”, Vestnik ChelGU, 2015, no. 3 (358), 6–17
[3] Dolbilin N. P., Magazinov A. N., “Lokalno antipodalnye mnozhestva Delone”, UMN, 70:5 (425) (2015), 179–180 | DOI | MR | Zbl
[4] Dolbilin N. P., Magazinov A. N., “Teorema edinstvennosti dlya lokalno antipodalnykh mnozhestv Delone”, Tr. MIAN, 294, 2016, 230–236 | Zbl
[5] Feinman R., Leiton R., Sends M., Feinmanovskie lektsii po fizike, 7, Editorial URSS, M., 2004
[6] Shtogrin M., “Ob ogranichenii poryadka osi pauchka v lokalno pravilnoi sisteme Delone”, Geometry, Topology, Algebra and Number Theory, Applications, The International Conference dedicated to the 120-th anniversary of Boris Nikolaevich Delone (1890–1980), Tezisy doklada (Moscow, August 16–20, 2010), Steklov Math. Inst., M., 2010, 168–169
[7] Dolbilin N., “Delone sets with congruent clusters”, Struct. Chem., 26:6 (2016), 1725–1732 | DOI
[8] Dolbilin N., “Delone sets: local identity and global order”, Discrete Geometry and Symmetry, Dedicated to Károly Bezdek and Egon Schulte on the Occasion of Their 60th Birthdays, Springer, Berlin, 2017, 109–125, arXiv: 1608.06842