Refinement of Novikov--Betti numbers and of Novikov homology provided by an angle valued map
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 93-113

Voir la notice de l'article provenant de la source Math-Net.Ru

To a pair $(X,f)$, $X$ compact ANR and $f\colon X\to \mathbb S^1$ a continuous angle valued map, $\kappa$ a field, and a nonnegative integer $r$, one assigns a finite configuration of complex numbers $z$ with multiplicities $\delta^f_r(z)$ and a finite configuration of free $\kappa[t^{-1}, t]$-modules $\hat \delta^f_r$ of rank $\delta^ f_r(z)$ indexed by the same numbers $z$. This is in analogy with the configuration of eigenvalues and of generalized eigenspaces of a linear operator in a finite-dimensional complex vector space. The configuration $\delta^f_r$ refines the Novikov–Betti number in dimension $r$ and the configuration $\hat \delta^f_r$ refines the Novikov homology in dimension $r$ associated with the cohomology class defined by $f$. In the case of the field $\kappa= \mathbb C$, the configuration $\hat \delta^f_r$ provides by “von-Neumann completion” of a configuration $\hat{\hat \delta}^f_r$ of mutually orthogonal closed Hilbert submodules of the $L_2$-homology of the infinite cyclic cover of $X$ determined by the map $f$, which is an $L^\infty(\mathbb S^1)$-Hilbert module.
@article{FPM_2016_21_6_a3,
     author = {D. Burghelea},
     title = {Refinement of {Novikov--Betti} numbers and of {Novikov} homology provided by an angle valued map},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {93--113},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a3/}
}
TY  - JOUR
AU  - D. Burghelea
TI  - Refinement of Novikov--Betti numbers and of Novikov homology provided by an angle valued map
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 93
EP  - 113
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a3/
LA  - ru
ID  - FPM_2016_21_6_a3
ER  - 
%0 Journal Article
%A D. Burghelea
%T Refinement of Novikov--Betti numbers and of Novikov homology provided by an angle valued map
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 93-113
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a3/
%G ru
%F FPM_2016_21_6_a3
D. Burghelea. Refinement of Novikov--Betti numbers and of Novikov homology provided by an angle valued map. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 93-113. http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a3/