Refinement of Novikov--Betti numbers and of Novikov homology provided by an angle valued map
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 93-113
Voir la notice de l'article provenant de la source Math-Net.Ru
To a pair $(X,f)$, $X$ compact ANR and $f\colon X\to \mathbb S^1$ a continuous angle valued map, $\kappa$ a field, and a nonnegative integer $r$, one assigns a finite configuration of complex numbers $z$ with multiplicities $\delta^f_r(z)$ and a finite configuration of free $\kappa[t^{-1}, t]$-modules $\hat \delta^f_r$ of rank $\delta^ f_r(z)$ indexed by the same numbers $z$. This is in analogy with the configuration of eigenvalues and of generalized eigenspaces of a linear operator in a finite-dimensional complex vector space. The configuration $\delta^f_r$ refines the Novikov–Betti number in dimension $r$ and the configuration $\hat \delta^f_r$ refines the Novikov homology in dimension $r$ associated with the cohomology class defined by $f$. In the case of the field $\kappa= \mathbb C$, the configuration $\hat \delta^f_r$ provides by “von-Neumann completion” of a configuration $\hat{\hat \delta}^f_r$ of mutually orthogonal closed Hilbert submodules of the $L_2$-homology of the infinite cyclic cover of $X$ determined by the map $f$, which is an $L^\infty(\mathbb S^1)$-Hilbert module.
@article{FPM_2016_21_6_a3,
author = {D. Burghelea},
title = {Refinement of {Novikov--Betti} numbers and of {Novikov} homology provided by an angle valued map},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {93--113},
publisher = {mathdoc},
volume = {21},
number = {6},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a3/}
}
TY - JOUR AU - D. Burghelea TI - Refinement of Novikov--Betti numbers and of Novikov homology provided by an angle valued map JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 93 EP - 113 VL - 21 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a3/ LA - ru ID - FPM_2016_21_6_a3 ER -
D. Burghelea. Refinement of Novikov--Betti numbers and of Novikov homology provided by an angle valued map. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 93-113. http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a3/