Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_6_a3, author = {D. Burghelea}, title = {Refinement of {Novikov--Betti} numbers and of {Novikov} homology provided by an angle valued map}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {93--113}, publisher = {mathdoc}, volume = {21}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a3/} }
TY - JOUR AU - D. Burghelea TI - Refinement of Novikov--Betti numbers and of Novikov homology provided by an angle valued map JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 93 EP - 113 VL - 21 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a3/ LA - ru ID - FPM_2016_21_6_a3 ER -
D. Burghelea. Refinement of Novikov--Betti numbers and of Novikov homology provided by an angle valued map. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 93-113. http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a3/
[1] Burghelea D., Linear relations, monodromy and Jordan cells of a circle valued map, arXiv: 1501.02486
[2] Burghelea D., Refinements of Betti numbers provided by a real valued map, arXiv: 1501.01012
[3] Burghelea D., Refinements for Novikov–Betti numbers = $L_2$-Betti numbers of $\bigl(X,\xi\in H^1(X;\mathbb Z)\bigr)$ induced by an angle valued map $f\colon X\to \mathbb S^1$, In preparation
[4] Burghelea D., Refinements of Betti numbers provided by an angle valued map, In preparation
[5] Burghelea D., Dey T. K., “Persistence for circle-valued maps”, Discrete Comput. Geom., 50:1 (2013), 69–98, arXiv: 1104.5646 | DOI | MR | Zbl
[6] Burghelea D., Haller S., Topology of angle valued maps, bar codes and Jordan blocks, Max Plank preprints, arXiv: 1303.4328
[7] Carlsson G., de Silva V., Morozov D., “Zigzag persistent homology and real-valued functions”, Proc. of the 25th Annual Symposium on Computational Geometry, SCG '09, ACM, New York, 2009, 247–256 | DOI | Zbl
[8] Chapman T. A., Lectures on Hilbert Cube Manifolds, CBMS Reg. Conf. Ser. Math., 28, Amer. Math. Soc., Providence, 1976 | DOI | MR | Zbl
[9] Cohen-Steiner D., Edelsbrunner H., Harer J. L., “Stability of persistence diagrams”, Discrete Comput. Geom., 37 (2007), 103–120 | DOI | MR | Zbl
[10] Daverman R. J., Walsh J. J., “A ghastly generalized $n$-manifold”, Illinois J. Math., 25:4 (1981), 555–576 | MR | Zbl
[11] Lück W., “Hilbert modules and modules over finite von Neumann algebras and applications to $L^2$ invariants”, Math. Ann., 309 (1997), 247–285 | DOI | MR | Zbl