Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_5_a8, author = {V. V. Ryzhikov and A. E. Troitskaya}, title = {Mixing flows with homogeneous spectrum of multiplicity~$2$}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {191--197}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a8/} }
TY - JOUR AU - V. V. Ryzhikov AU - A. E. Troitskaya TI - Mixing flows with homogeneous spectrum of multiplicity~$2$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 191 EP - 197 VL - 21 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a8/ LA - ru ID - FPM_2016_21_5_a8 ER -
V. V. Ryzhikov; A. E. Troitskaya. Mixing flows with homogeneous spectrum of multiplicity~$2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 191-197. http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a8/
[1] Konev R. A., Ryzhikov V. V., “O nabore spektralnykh kratnostei $\{2, 4,\ldots, 2^n\}$ dlya vpolne ergodicheskikh $\Z^2$-deistvii”, Matem. zametki, 96:3 (2014), 383–392 | DOI | MR | Zbl
[2] Oseledets V. I., “Avtomorfizm s prostym i nepreryvnym spektrom bez gruppovogo svoistva”, Matem. zametki, 5:3 (1969), 323–326 | Zbl
[3] Ryzhikov V. V., “O spektralnykh i peremeshivayuschikh svoistvakh konstruktsii ranga $1$ v ergodicheskoi teorii”, Dokl. RAN, 409:4 (2006), 448–450 | MR | Zbl
[4] Ryzhikov V. V., “Slabye predely stepenei, prostoi spektr simmetricheskikh proizvedenii i peremeshivayuschie konstruktsii ranga $1$”, Matem. sb., 198:5 (2007), 137–159 | DOI | MR | Zbl
[5] Stepin A. M., “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 801–834 | MR
[6] Tikhonov S. V., “Peremeshivayuschie preobrazovaniya s odnorodnym spektrom”, Matem. sb., 202:8 (2011), 139–160 | DOI | Zbl
[7] Adams T. M., “Smorodinsky's conjecture on rank-one mixing”, Proc. Am. Math. Soc., 126:3 (1998), 739–744 | DOI | MR | Zbl
[8] Ageev O. N., “On ergodic transformations with homogeneous spectrum”, J. Dynam. Control Systems, 5:1 (1999), 149–152 | DOI | MR | Zbl
[9] Danilenko A. I., “A survey on spectral multiplicities of ergodic actions”, Ergodic Theory Dynam. Systems, 33:1 (2013), 81–117 | DOI | MR | Zbl
[10] Danilenko A. I., Ryzhikov V. V., “On self-similarities of ergodic flows”, Proc. London Math. Soc. (3), 104:3 (2012), 431–454 | DOI | MR | Zbl
[11] Katok A., Lemanczyk M., “Some new cases of realization of spectral multiplicity function for ergodic transformations”, Fund. Math., 206 (2009), 185–215 | DOI | MR | Zbl
[12] Ryzhikov V. V., “Transformations having homogeneous spectra”, J. Dynam. Control Systems, 5:1 (1999), 145–148 | DOI | MR | Zbl