Mixing flows with homogeneous spectrum of multiplicity~$2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 191-197

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the problem of realization of spectral multiplicities for mixing dynamical systems. It is shown that in the class of mixing flows the homogeneous spectrum of multiplicity $2$ can be realized.
@article{FPM_2016_21_5_a8,
     author = {V. V. Ryzhikov and A. E. Troitskaya},
     title = {Mixing flows with homogeneous spectrum of multiplicity~$2$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {191--197},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a8/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
AU  - A. E. Troitskaya
TI  - Mixing flows with homogeneous spectrum of multiplicity~$2$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 191
EP  - 197
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a8/
LA  - ru
ID  - FPM_2016_21_5_a8
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%A A. E. Troitskaya
%T Mixing flows with homogeneous spectrum of multiplicity~$2$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 191-197
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a8/
%G ru
%F FPM_2016_21_5_a8
V. V. Ryzhikov; A. E. Troitskaya. Mixing flows with homogeneous spectrum of multiplicity~$2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 191-197. http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a8/