Classification of metric spaces whose Steiner--Gromov ratio is equal to one
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 181-189
Voir la notice de l'article provenant de la source Math-Net.Ru
Several equivalent conditions for the Steiner–Gromov ratio of a metric space to be equal to one are stated, i.e., conditions for each minimal spanning tree in any finite subset of a given metric space to be both a shortest tree and a minimal filling. A complete classification of such spaces is obtained.
@article{FPM_2016_21_5_a7,
author = {A. S. Pahkomova},
title = {Classification of metric spaces whose {Steiner--Gromov} ratio is equal to one},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {181--189},
publisher = {mathdoc},
volume = {21},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a7/}
}
TY - JOUR AU - A. S. Pahkomova TI - Classification of metric spaces whose Steiner--Gromov ratio is equal to one JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 181 EP - 189 VL - 21 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a7/ LA - ru ID - FPM_2016_21_5_a7 ER -
A. S. Pahkomova. Classification of metric spaces whose Steiner--Gromov ratio is equal to one. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 181-189. http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a7/