Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_5_a3, author = {M. A. Gerasimova}, title = {On finiteness conditions in twisted $K$-theory}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {61--77}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a3/} }
M. A. Gerasimova. On finiteness conditions in twisted $K$-theory. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 61-77. http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a3/
[1] Atiyah M., Segal G., “Twisted K-theory”, Ukrain. Mat. Visn., 1:3 (2004), 287–330 | MR
[2] Atiyah M. F., Singer I. M., “The index of elliptic operators. I”, Ann. Math. (2), 87 (1968), 484–530 | DOI | MR | Zbl
[3] Atiyah M. F., Singer I. M., “The index of elliptic operators. IV”, Ann. Math. (2), 93 (1971), 119–138 | DOI | MR | Zbl
[4] Buneci M. R., “Groupoid $C^*$-algebras”, Surv. Math. Its Appl., 1 (2006), 71–98 | MR | Zbl
[5] Cuntz J., Meyer R., Rosenberg J. M., “Topological and bivariant K-theory”, Oberwolfach Sem., 36 (2007), 173–182 | MR
[6] Emerson H., Meyer R., “Bivariant K-theory via correspondence”, Adv. Math., 225 (2010), 2883–2919 | DOI | MR | Zbl
[7] Emerson H., Meyer R., “Equivariant embedding theorems and topological index maps”, Adv. Math., 225:5 (2010), 2840–2882 | DOI | MR | Zbl
[8] Grothendieck A., “Le group de Brauer: I. Algèbres d'Azumaya et interprétations diverses”, Sem. N. Bourbaki. 1964–1966, Talk no. 290, 199–219 | MR
[9] Mathai V., Melrose R. B., Singer I. M., “The index of projective families of elliptic operators”, Geometry Topology, 9 (2005), 341–373 | DOI | MR | Zbl
[10] Nistor V., “An index theorem for gauge-invariant families: The case of solvable groups”, Acta Math. Hungar., 99:1–2 (2003), 155–183 | DOI | MR | Zbl
[11] Nistor V., Troitsky E., “An index for gauge-invariant operators and the Dixmier–Douady invariant”, Trans. Amer. Math. Soc., 356:1 (2004), 185–218 | DOI | MR | Zbl
[12] Nistor V., Troitsky E., “The Thom isomorphism in gauge-equivariant K-theory”, $C^*$-algebras and elliptic theory, Trends Math., Birkhäuser, 2006, 213–245 | DOI | MR | Zbl
[13] Nistor V., Troitsky E., An index theorem in the gauge-equivariant K-theory, , 2009; http://mech.math.msu.su/t̃roitsky/muens.pdfhttp://wwwmath.uni-muenster.de/u/echters/Focused-Semester/workshopabstracts.html
[14] Nistor V., Troitsky E., “Analysis of gauge-equivariant complexes and a topological index theorem for gauge-invariant families”, Russ. J. Math. Phys., 22:1 (2015), 74–97 | DOI | MR | Zbl
[15] Renault J., “The ideal structure of groupoid cross product $C^*$-algebras”, J. Operator Theor., 25 (1991), 3–36 | MR | Zbl