Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_5_a10, author = {E. V. Troitskii}, title = {Two examples related to the twisted {Burnside--Frobenius} theory for infinitely generated groups}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {219--227}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a10/} }
TY - JOUR AU - E. V. Troitskii TI - Two examples related to the twisted Burnside--Frobenius theory for infinitely generated groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 219 EP - 227 VL - 21 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a10/ LA - ru ID - FPM_2016_21_5_a10 ER -
%0 Journal Article %A E. V. Troitskii %T Two examples related to the twisted Burnside--Frobenius theory for infinitely generated groups %J Fundamentalʹnaâ i prikladnaâ matematika %D 2016 %P 219-227 %V 21 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a10/ %G ru %F FPM_2016_21_5_a10
E. V. Troitskii. Two examples related to the twisted Burnside--Frobenius theory for infinitely generated groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 219-227. http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a10/
[1] Nasybullov T. R., “Klassy skruchennoi sopryazhennosti v obschei i spetsialnoi lineinykh gruppakh”, Algebra i logika, 51:3 (2012), 331–346 | MR | Zbl
[2] Troitskii E. V., “Nekommutativnaya teorema Rissa i slabaya teorema tipa Bernsaida o skruchennoi sopryazhennosti”, Funkts. analiz i ego pril., 40:2 (2006), 44–54 | DOI | MR
[3] Felshtyn A. L., “Chislo Raidemaistera lyubogo avtomorfizma gromovskoi giperbolicheskoi gruppy beskonechno”, Zap. nauchn. sem. POMI, 279, 2001, 229–240 | Zbl
[4] Bleak C., Fel'shtyn A., Gon{ç}alves D. L., “Twisted conjugacy classes in R. Thompson's group $F$”, Pacific J. Math., 238:1 (2008), 1–6 | DOI | MR | Zbl
[5] Burillo J., Matucci F., Ventura E., The conjugacy problem in extensions of Thompson's group $F$, 2013, arXiv: 1307.6750 [math.GR] | MR
[6] Dekimpe K., Gon{ç}alves D., “The $R_\infty$ property for free groups, free nilpotent groups and free solvable groups”, Bull. London Math. Soc., 46:4 (2014), 737–746 | DOI | MR | Zbl
[7] Dekimpe K., Gon{ç}alves D., “The ${R}_{\infty}$ property for Abelian groups”, Topol. Methods Nonlinear Anal., 46:2 (2015), 773–784 | MR | Zbl
[8] Dekimpe K., Penninckx P., “The finiteness of the Reidemeister number of morphisms between almost-crystallographic groups”, J. Fixed Point Theory Appl., 9:2 (2011), 257–283 | DOI | MR | Zbl
[9] Fel'shtyn A., Dynamical Zeta Functions, Nielsen Theory and Reidemeister Torsion, Mem. Am. Math. Soc., 147, no. 699, Amer. Math. Soc., Providence, 2000 | MR
[10] Fel'shtyn A., “New directions in Nielsen–Reidemeister theory”, Topology Appl., 157:10–11 (2010), 1724–1735 | DOI | MR | Zbl
[11] Fel'shtyn A., Gon{ç}alves D. L., “The Reidemeister number of any automorphism of a Baumslag–Solitar group is infinite”, Geometry and Dynamics of Groups and Spaces, Progr. Math., 265, Birkhäuser, Basel, 2008, 399–414 | DOI | MR | Zbl
[12] Fel'shtyn A., Gon{ç}alves D. L., “Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups”, Geom. Dedicata, 146 (2010), 211–223 (With an appendix written jointly with Francois Dahmani) | DOI | MR | Zbl
[13] Fel'shtyn A., Gon{ç}alves D. L., “Reidemeister spectrum for metabelian groups of the form $Q^n\rtimes\mathbb{Z}$ and $\mathbb{Z}[1/p]^n\rtimes\mathbb{Z}$, $p$ prime”, Internat. J. Algebra Comput., 21:3 (2011), 505–520 | DOI | MR | Zbl
[14] Fel'shtyn A., Hill R., “The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion”, $K$-Theory, 8:4 (1994), 367–393 | DOI | MR | Zbl
[15] Fel'shtyn A., Leonov Yu., Troitsky E., “Twisted conjugacy classes in saturated weakly branch groups”, Geom. Dedicata, 134 (2008), 61–73 | DOI | MR | Zbl
[16] Fel'shtyn A., Luchnikov N., Troitsky E., “Twisted inner representations”, Russ. J. Math. Phys., 22:3 (2015), 301–306 | DOI | MR | Zbl
[17] Fel'shtyn A., Nasybullov T., “The ${R}_{\infty}$ and ${S}_{\infty}$ properties for linear algebraic groups”, J. Group Theory, 19:5 (2016), 901–921 | MR | Zbl
[18] Fel'shtyn A., Troitsky E., “A twisted Burnside theorem for countable groups and Reidemeister numbers”, Noncommutative Geometry and Number Theory, eds. C. Consani, M. Marcolli, Vieweg, Braunschweig, 2006, 141–154 | DOI | MR | Zbl
[19] Fel'shtyn A., Troitsky E., “Twisted Burnside-Frobenius theory for discrete groups”, J. Reine Angew. Math., 613 (2007), 193–210 | MR | Zbl
[20] Fel'shtyn A., Troitsky E., Twisted conjugacy classes in residually finite groups, 2012, arXiv: 1204.3175 [math.GR]
[21] Fel'shtyn A., Troitsky E., “Aspects of the property ${R}_{\infty}$”, J. Group Theory, 18:6 (2015), 1021–1034 | MR | Zbl
[22] Fel'shtyn A., Troitsky E., Vershik A., “Twisted Burnside theorem for type II${}_1$ groups: an example”, Math. Res. Lett., 13:5 (2006), 719–728 | DOI | MR | Zbl
[23] Gon{ç}alves D., Kochloukova D. H., “Sigma theory and twisted conjugacy classes”, Pacific J. Math., 247:2 (2010), 335–352 | DOI | MR | Zbl
[24] Gon{ç}alves D., Wong P., “Twisted conjugacy classes in wreath products”, Internat. J. Algebra Comput., 16:5 (2006), 875–886 | DOI | MR | Zbl
[25] Gon{ç}alves D., Wong P., “Twisted conjugacy classes in nilpotent groups”, J. Reine Angew. Math., 633 (2009), 11–27 | MR | Zbl
[26] Guyot L., Stalder Y., “Limits of Baumslag–Solitar groups and dimension estimates in the space of marked groups”, Groups Geom. Dyn., 6:3 (2012), 533–577 | DOI | MR | Zbl
[27] Jabara E., “Automorphisms with finite Reidemeister number in residually finite groups”, J. Algebra, 320:10 (2008), 3671–3679 | DOI | MR | Zbl
[28] Jiang B., Lectures on Nielsen Fixed Point Theory, Contemp. Math., 14, Amer. Math. Soc., Providence, 1983 | DOI | MR | Zbl
[29] Juhász A., “Twisted conjugacy in certain Artin groups”, Ischia Group Theory 2010: eProceedings, World Scientific, 2011, 175–195 | DOI | MR
[30] Levitt G., Lustig M., “Most automorphisms of a hyperbolic group have very simple dynamics”, Ann. Scient. Éc. Norm. Sup., 33 (2000), 507–517 | DOI | MR | Zbl
[31] Mubeena T., Sankaran P., “Twisted Conjugacy Classes in Abelian Extensions of Certain Linear Groups”, Canad. Math. Bull., 57:1 (2014), 132–140 | DOI | MR | Zbl
[32] Mubeena T., Sankaran P., “Twisted conjugacy classes in lattices in semisimple Lie groups”, Transformation Groups, 19:1 (2014), 159–169 | DOI | MR | Zbl
[33] Roman'kov V., “Twisted conjugacy classes in nilpotent groups”, J. Pure Appl. Algebra, 215:4 (2011), 664–671 | DOI | MR | Zbl
[34] Taback J., Wong P., “Twisted conjugacy and quasi-isometry invariance for generalized solvable Baumslag–Solitar groups”, J. London Math. Soc. (2), 75:3 (2007), 705–717 | DOI | MR | Zbl