Two examples related to the twisted Burnside--Frobenius theory for infinitely generated groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 219-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

The TBFT$_f$ conjecture, which is a modification of a conjecture by Fel'shtyn and Hill, says that if the Reidemeister number $R(\phi)$ of an automorphism $\phi$ of a (countable discrete) group $G$ is finite, then it coincides with the number of fixed points of the corresponding homeomorphism $\hat{\phi}$ of $\hat{G}_f$ (the part of the unitary dual formed by finite-dimensional representations). The study of this problem for residually finite groups has been the subject of some recent activity. We prove here that for infinitely generated residually finite groups there are positive and negative examples for this conjecture. It is detected that the finiteness properties of the number of fixed points of $\phi$ itself also differ from the finitely generated case.
@article{FPM_2016_21_5_a10,
     author = {E. V. Troitskii},
     title = {Two examples related to the twisted {Burnside--Frobenius} theory for infinitely generated groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {219--227},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a10/}
}
TY  - JOUR
AU  - E. V. Troitskii
TI  - Two examples related to the twisted Burnside--Frobenius theory for infinitely generated groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 219
EP  - 227
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a10/
LA  - ru
ID  - FPM_2016_21_5_a10
ER  - 
%0 Journal Article
%A E. V. Troitskii
%T Two examples related to the twisted Burnside--Frobenius theory for infinitely generated groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 219-227
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a10/
%G ru
%F FPM_2016_21_5_a10
E. V. Troitskii. Two examples related to the twisted Burnside--Frobenius theory for infinitely generated groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 219-227. http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a10/

[1] Nasybullov T. R., “Klassy skruchennoi sopryazhennosti v obschei i spetsialnoi lineinykh gruppakh”, Algebra i logika, 51:3 (2012), 331–346 | MR | Zbl

[2] Troitskii E. V., “Nekommutativnaya teorema Rissa i slabaya teorema tipa Bernsaida o skruchennoi sopryazhennosti”, Funkts. analiz i ego pril., 40:2 (2006), 44–54 | DOI | MR

[3] Felshtyn A. L., “Chislo Raidemaistera lyubogo avtomorfizma gromovskoi giperbolicheskoi gruppy beskonechno”, Zap. nauchn. sem. POMI, 279, 2001, 229–240 | Zbl

[4] Bleak C., Fel'shtyn A., Gon{ç}alves D. L., “Twisted conjugacy classes in R. Thompson's group $F$”, Pacific J. Math., 238:1 (2008), 1–6 | DOI | MR | Zbl

[5] Burillo J., Matucci F., Ventura E., The conjugacy problem in extensions of Thompson's group $F$, 2013, arXiv: 1307.6750 [math.GR] | MR

[6] Dekimpe K., Gon{ç}alves D., “The $R_\infty$ property for free groups, free nilpotent groups and free solvable groups”, Bull. London Math. Soc., 46:4 (2014), 737–746 | DOI | MR | Zbl

[7] Dekimpe K., Gon{ç}alves D., “The ${R}_{\infty}$ property for Abelian groups”, Topol. Methods Nonlinear Anal., 46:2 (2015), 773–784 | MR | Zbl

[8] Dekimpe K., Penninckx P., “The finiteness of the Reidemeister number of morphisms between almost-crystallographic groups”, J. Fixed Point Theory Appl., 9:2 (2011), 257–283 | DOI | MR | Zbl

[9] Fel'shtyn A., Dynamical Zeta Functions, Nielsen Theory and Reidemeister Torsion, Mem. Am. Math. Soc., 147, no. 699, Amer. Math. Soc., Providence, 2000 | MR

[10] Fel'shtyn A., “New directions in Nielsen–Reidemeister theory”, Topology Appl., 157:10–11 (2010), 1724–1735 | DOI | MR | Zbl

[11] Fel'shtyn A., Gon{ç}alves D. L., “The Reidemeister number of any automorphism of a Baumslag–Solitar group is infinite”, Geometry and Dynamics of Groups and Spaces, Progr. Math., 265, Birkhäuser, Basel, 2008, 399–414 | DOI | MR | Zbl

[12] Fel'shtyn A., Gon{ç}alves D. L., “Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups”, Geom. Dedicata, 146 (2010), 211–223 (With an appendix written jointly with Francois Dahmani) | DOI | MR | Zbl

[13] Fel'shtyn A., Gon{ç}alves D. L., “Reidemeister spectrum for metabelian groups of the form $Q^n\rtimes\mathbb{Z}$ and $\mathbb{Z}[1/p]^n\rtimes\mathbb{Z}$, $p$ prime”, Internat. J. Algebra Comput., 21:3 (2011), 505–520 | DOI | MR | Zbl

[14] Fel'shtyn A., Hill R., “The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion”, $K$-Theory, 8:4 (1994), 367–393 | DOI | MR | Zbl

[15] Fel'shtyn A., Leonov Yu., Troitsky E., “Twisted conjugacy classes in saturated weakly branch groups”, Geom. Dedicata, 134 (2008), 61–73 | DOI | MR | Zbl

[16] Fel'shtyn A., Luchnikov N., Troitsky E., “Twisted inner representations”, Russ. J. Math. Phys., 22:3 (2015), 301–306 | DOI | MR | Zbl

[17] Fel'shtyn A., Nasybullov T., “The ${R}_{\infty}$ and ${S}_{\infty}$ properties for linear algebraic groups”, J. Group Theory, 19:5 (2016), 901–921 | MR | Zbl

[18] Fel'shtyn A., Troitsky E., “A twisted Burnside theorem for countable groups and Reidemeister numbers”, Noncommutative Geometry and Number Theory, eds. C. Consani, M. Marcolli, Vieweg, Braunschweig, 2006, 141–154 | DOI | MR | Zbl

[19] Fel'shtyn A., Troitsky E., “Twisted Burnside-Frobenius theory for discrete groups”, J. Reine Angew. Math., 613 (2007), 193–210 | MR | Zbl

[20] Fel'shtyn A., Troitsky E., Twisted conjugacy classes in residually finite groups, 2012, arXiv: 1204.3175 [math.GR]

[21] Fel'shtyn A., Troitsky E., “Aspects of the property ${R}_{\infty}$”, J. Group Theory, 18:6 (2015), 1021–1034 | MR | Zbl

[22] Fel'shtyn A., Troitsky E., Vershik A., “Twisted Burnside theorem for type II${}_1$ groups: an example”, Math. Res. Lett., 13:5 (2006), 719–728 | DOI | MR | Zbl

[23] Gon{ç}alves D., Kochloukova D. H., “Sigma theory and twisted conjugacy classes”, Pacific J. Math., 247:2 (2010), 335–352 | DOI | MR | Zbl

[24] Gon{ç}alves D., Wong P., “Twisted conjugacy classes in wreath products”, Internat. J. Algebra Comput., 16:5 (2006), 875–886 | DOI | MR | Zbl

[25] Gon{ç}alves D., Wong P., “Twisted conjugacy classes in nilpotent groups”, J. Reine Angew. Math., 633 (2009), 11–27 | MR | Zbl

[26] Guyot L., Stalder Y., “Limits of Baumslag–Solitar groups and dimension estimates in the space of marked groups”, Groups Geom. Dyn., 6:3 (2012), 533–577 | DOI | MR | Zbl

[27] Jabara E., “Automorphisms with finite Reidemeister number in residually finite groups”, J. Algebra, 320:10 (2008), 3671–3679 | DOI | MR | Zbl

[28] Jiang B., Lectures on Nielsen Fixed Point Theory, Contemp. Math., 14, Amer. Math. Soc., Providence, 1983 | DOI | MR | Zbl

[29] Juhász A., “Twisted conjugacy in certain Artin groups”, Ischia Group Theory 2010: eProceedings, World Scientific, 2011, 175–195 | DOI | MR

[30] Levitt G., Lustig M., “Most automorphisms of a hyperbolic group have very simple dynamics”, Ann. Scient. Éc. Norm. Sup., 33 (2000), 507–517 | DOI | MR | Zbl

[31] Mubeena T., Sankaran P., “Twisted Conjugacy Classes in Abelian Extensions of Certain Linear Groups”, Canad. Math. Bull., 57:1 (2014), 132–140 | DOI | MR | Zbl

[32] Mubeena T., Sankaran P., “Twisted conjugacy classes in lattices in semisimple Lie groups”, Transformation Groups, 19:1 (2014), 159–169 | DOI | MR | Zbl

[33] Roman'kov V., “Twisted conjugacy classes in nilpotent groups”, J. Pure Appl. Algebra, 215:4 (2011), 664–671 | DOI | MR | Zbl

[34] Taback J., Wong P., “Twisted conjugacy and quasi-isometry invariance for generalized solvable Baumslag–Solitar groups”, J. London Math. Soc. (2), 75:3 (2007), 705–717 | DOI | MR | Zbl