Computer analysis of the attractors of zeros for classical Bernstein polynomials
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 151-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with special questions on the behavior of zeros of sequences of Bernstein polynomials. For a piecewise linear generating function, computer mathematics machinery was used to find the rules controlling the limit behavior of zeros as the number of the Bernstein polynomial unboundedly increases. New problems for theoretical investigations are formulated.
@article{FPM_2016_21_4_a7,
     author = {I. V. Tikhonov and D. G. Tsvetkovich and V. B. Sherstyukov},
     title = {Computer analysis of the attractors of zeros for classical {Bernstein} polynomials},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {151--174},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a7/}
}
TY  - JOUR
AU  - I. V. Tikhonov
AU  - D. G. Tsvetkovich
AU  - V. B. Sherstyukov
TI  - Computer analysis of the attractors of zeros for classical Bernstein polynomials
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 151
EP  - 174
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a7/
LA  - ru
ID  - FPM_2016_21_4_a7
ER  - 
%0 Journal Article
%A I. V. Tikhonov
%A D. G. Tsvetkovich
%A V. B. Sherstyukov
%T Computer analysis of the attractors of zeros for classical Bernstein polynomials
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 151-174
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a7/
%G ru
%F FPM_2016_21_4_a7
I. V. Tikhonov; D. G. Tsvetkovich; V. B. Sherstyukov. Computer analysis of the attractors of zeros for classical Bernstein polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 151-174. http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a7/

[1] Bernshtein S. N., “Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités”, Soobsch. Kharkov. matem. obsch., 13:1 (1912), 1–2

[2] Bernshtein S. N., “O skhodimosti mnogochlenov $\sum\limits_{0}^{n}C_n^mf(\frac{m}{n})x^m(1-x)^{n-m}$ v kompleksnoi oblasti”, Izv. Akad. nauk SSSR. Ser. matem., 7:2 (1943), 49–88

[3] Videnskii V. S., Mnogochleny Bernshteina, Uch. posob. k spetskursu, LGPI im. A. I. Gertsena, L., 1990

[4] Kantorovich L. V., “O skhodimosti posledovatelnosti polinomov S. N. Bernshteina za predelami osnovnogo intervala”, Izv. Akad. nauk SSSR. VII ser. Otd. matem. i estestv. nauk, 1931, no. 8, 1103–1115

[5] Montel P., Normalnye semeistva analiticheskikh funktsii, ONTI NKTP SSSR, M.–L., 1936

[6] Natanson I. P., Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR

[7] Novikov I. Ya., “Asimptotika kornei polinomov Bernshteina, ispolzuemykh v postroenii modifitsirovannykh vspleskov Dobeshi”, Matem. zametki, 71:2 (2002), 239–253 | DOI | MR

[8] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980 | MR

[9] Tikhonov I. V., Sherstyukov V. B., “Priblizhenie modulya polinomami Bernshteina”, Vestn. Chelyabinsk. gos. un-ta. Matematika. Mekhanika. Informatika, 15:26 (2012), 6–40

[10] Tikhonov I. V., Sherstyukov V. B., Petrosova M. A., “Polinomy Bernshteina: staroe i novoe”, Matem. forum, 8:1 (2014), 126–175

[11] Tikhonov I. V., Sherstyukov V. B., Tsvetkovich D. G., “Zadacha o nulyakh polinomov Bernshteina na modelnom primere simmetrichnogo modulya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunar. Saratov. zimnei shkoly, Nauchnaya kniga, Saratov, 2016, 271–275

[12] Tikhonov I. V., Sherstyukov V. B., Tsvetkovich D. G., “Kompyuternaya klassifikatsiya attraktorov dlya nulei polinomov Bernshteina”, Materialy XVII mezhdunar. nauch. konf., Sistemy kompyuternoi matematiki i ikh prilozheniya, 17, SmolGU, Smolensk, 2016, 224–227

[13] Tikhonov I. V., Sherstyukov V. B., Tsvetkovich D. G., “Spetsialnye zadachi dlya polinomov Bernshteina v kompleksnoi oblasti”, Nekotorye aktualnye problemy sovremennoi matematiki i matematicheskogo obrazovaniya, Gertsenovskie chteniya 2016, Materialy nauch. konf. (11–15 aprelya 2016 g.), Izd. RGPU im. A. I. Gertsena, SPb., 2016, 139–145

[14] DeVore R. A., Lorentz G. G., Constructive Approximation, Springer, Berlin, 1993 | MR

[15] Jentzsch R., “Untersuchungen zur Theorie der Folgen analytischer Funktionen”, Acta Math., 41 (1918), 219–251 | DOI | MR

[16] Lorentz G. G., Bernstein Polynomials, Univ. of Toronto Press, Toronto, 1953 | MR

[17] Phillips G. M., Interpolation and Approximation by Polynomials, Springer, Berlin, 2003 | MR

[18] Popoviciu T., “Sur l'approximation des fonctions convexes d'ordre supérieur”, Mathematica, 10 (1935), 49–54

[19] Rahman Q. I., Schmeisser G., Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002 | MR