Data compression in big graph warehouse
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 125-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose an approach for compact storage of big graphs. We propose preprocessing algorithms for graphs of a certain type, which can significantly increase the data density on the disk and increase performance for basic operations with graphs.
@article{FPM_2016_21_4_a5,
     author = {I. V. Polyakov and A. A. Chepovskiy and A. M. Chepovskiy},
     title = {Data compression in big graph warehouse},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {125--132},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a5/}
}
TY  - JOUR
AU  - I. V. Polyakov
AU  - A. A. Chepovskiy
AU  - A. M. Chepovskiy
TI  - Data compression in big graph warehouse
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 125
EP  - 132
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a5/
LA  - ru
ID  - FPM_2016_21_4_a5
ER  - 
%0 Journal Article
%A I. V. Polyakov
%A A. A. Chepovskiy
%A A. M. Chepovskiy
%T Data compression in big graph warehouse
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 125-132
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a5/
%G ru
%F FPM_2016_21_4_a5
I. V. Polyakov; A. A. Chepovskiy; A. M. Chepovskiy. Data compression in big graph warehouse. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 125-132. http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a5/

[1] Polyakov I. V., Chepovskii A. A., Chepovskii A. M., “Khranenie i obrabotka grafa sotsialnykh setei”, Vestn. NGU. Ser. Inform. tekhnol., 11:4 (2013), 77–83

[2] Polyakov I. V., Chepovskii A. A., Chepovskii A. M., “Algoritmy poiska putei na grafakh bolshogo razmera”, Fundament. i prikl. matem., 19:1 (2014), 165–172

[3] Angles R. A., “Comparison of current graph database models”, Proc. of the 2012 IEEE 28th Int. Conf. on Data Engineering Workshops, ICDEW '12, IEEE Comput. Soc., Washington, 2012, 171–177 | DOI

[4] Angles R. A., Gutierrez C., “Survey of graph database models”, ACM Comput. Surv., 40:1 (2008), 1–39 | DOI | MR

[5] Batra S., Tyagi C., “Comparative analysis of relational and graph databases”, Int. J. Soft Comput. Eng., 2012, 509–512

[6] Bell T., Witten I. H., Cleary J. G., “Modeling for Text Compression”, ACM Comp. Surv., 21:4 (1989), 557–591 | DOI

[7] Deorowicz S., Universal lossless data compression algorithms, Doctor of Philosophy Dissertation, Silesian Univ. of Technology, Faculty of Automatic Control, Electronics and Computer Science, Institute of Comput. Sci., Gliwice, 2003

[8] Kang U., Tong H., Sun J., Lin C.-Y., Faloutsos C., “GBASE: a scalable and general graph management system”, Proc. of the 17th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (August 21–24, San Diego, USA, 2011)

[9] Mahoney M., Adaptive Weighing of Context Models for Lossless Data Compression, Tech. Report CS-2005-16, Florida Inst. of Technology, CS Department, Melbourne, 2005

[10] Peter P., Hoffmann S., Nedwed F., Hoeltgen L., Weickert J., “Evaluating the true potential of diffusion-based inpainting in a compression context”, Signal Processing: Image Communication, 46 (2016), 40–53 | DOI

[11] Shrinivas S. G., “Applications of graph theory in computer science: an overview”, Int. J. Eng. Sci. Tech., 2010, no. 9, 4610–4621