Nonassociative algebraic structures in cryptography and coding
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 99-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this review, we consider applications of nonassociative algebraic structures for the construction of linearly optimal codes and cryptosystems.
@article{FPM_2016_21_4_a4,
     author = {V. T. Markov and A. V. Mikhalev and A. A. Nechaev},
     title = {Nonassociative algebraic structures in cryptography and coding},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {99--124},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a4/}
}
TY  - JOUR
AU  - V. T. Markov
AU  - A. V. Mikhalev
AU  - A. A. Nechaev
TI  - Nonassociative algebraic structures in cryptography and coding
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 99
EP  - 124
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a4/
LA  - ru
ID  - FPM_2016_21_4_a4
ER  - 
%0 Journal Article
%A V. T. Markov
%A A. V. Mikhalev
%A A. A. Nechaev
%T Nonassociative algebraic structures in cryptography and coding
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 99-124
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a4/
%G ru
%F FPM_2016_21_4_a4
V. T. Markov; A. V. Mikhalev; A. A. Nechaev. Nonassociative algebraic structures in cryptography and coding. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 99-124. http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a4/

[1] Gonsales S., Kouselo E., Markov V. T., Nechaev A. A., “Gruppovye kody i ikh neassotsiativnye obobscheniya”, Diskret. matem., 14:1 (2004), 146–156 | DOI | MR

[2] Gribov A. V., “Gomomorfnost nekotorykh kriptograficheskikh sistem na osnove neassotsiativnykh struktur”, Fundament. i prikl. matem., 20:1 (2015), 135–149

[3] Gribov A. V., Zolotykh P. A., Mikhalev A. V., “Postroenie algebraicheskoi kriptosistemy nad kvazigruppovym koltsom”, Matem. vopr. kriptografii, 1:4 (2010), 23–33 | DOI

[4] Katyshev S. Yu., Markov V. T., Nechaev A. A., “Ispolzovanie neassotsiativnykh gruppoidov dlya realizatsii protsedury otkrytogo raspredeleniya klyuchei”, Diskret. matem., 26:3 (2014), 45–64 | DOI

[5] Kuzmin A. S., Markov V. T., Mikhalev A. A., Mikhalev A. V., “Kriptograficheskie algoritmy na gruppakh i algebrakh”, Fundament. i prikl. matem., 20:1 (2015), 205–222

[6] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979

[7] Markov V. T., Mikhalev A. V., Gribov A. V., Zolotykh P. A., Skazhenik S. S., “Kvazigruppy i koltsa v kodirovanii i postroenii kriptoskhem”, Prikl. diskret. matem., 2012, no. 4, 31–52

[8] Rososhek S. K., “Kriptosistemy gruppovykh kolets”, Vestn. Tomsk. gos. un-ta, 2003, no. 6, 57–62

[9] Brouwer A. E., “Bounds on linear codes”, Handbook of Coding Theory, eds. V. S. Pless, W. C. Huffman, Elsevier, Amsterdam, 1998, 295–461 | MR

[10] Grassl M., “Searching for linear codes with large minimum distance”, Discovering Mathematics with Magma, eds. W. Bosma, J. Cannon, Springer, Berlin, 2006 | MR

[11] Heise W., Quattrocci P., Informations- und Codierungstheorie, Springer, Berlin, 1995 | MR

[12] Magliveras S. S., Stinson D. R., Tran van Trung., “New approaches to designing public key cryptosystem using one-way functions and trap-doors in finite groups”, J. Cryptology, 15:4 (2008), 285–297 | DOI | MR

[13] Menezes A., Okamoto T., Vanstone S., “Reducing elliptic curve logarithms to logarithms in a finite field”, IEEE Trans. Inform. Theory, 39:5 (1993), 1639–1646 | DOI | MR

[14] Pflugfelder H. O., Quasigroups and Loops: Introduction, Sigma Ser. Pure Math., 8, Heldermann, Berlin, 1990 | MR

[15] Silverman J., The Arithmetic of the Elliptic Curves, Springer, Berlin, 1986 | MR