The Wiener measure on the Heisenberg group and parabolic equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 67-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study questions related to the theory of stochastic processes on Lie nilpotent groups. In particular, we consider the stochastic process on the Heisenberg group $H_3(\mathbb{R})$ whose trajectories satisfy the horizontal conditions in the stochastic sense relative to the standard contact structure on $H_3(\mathbb{R})$. It is shown that this process is a homogeneous Markov process relative to the Heisenberg group operation. There was found a representation in the form of a Wiener integral for a one-parameter linear semigroup of operators for which the Heisenberg sublaplacian generated by basis vector fields of the corresponding Lie algebra $L(H_3)$ is producing. The main method of solving the problem in this paper is using the path integrals technique, which indicates the common direction of further development of the results.
@article{FPM_2016_21_4_a3,
     author = {S. V. Mamon},
     title = {The {Wiener} measure on the {Heisenberg} group and parabolic equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {67--98},
     year = {2016},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a3/}
}
TY  - JOUR
AU  - S. V. Mamon
TI  - The Wiener measure on the Heisenberg group and parabolic equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 67
EP  - 98
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a3/
LA  - ru
ID  - FPM_2016_21_4_a3
ER  - 
%0 Journal Article
%A S. V. Mamon
%T The Wiener measure on the Heisenberg group and parabolic equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 67-98
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a3/
%G ru
%F FPM_2016_21_4_a3
S. V. Mamon. The Wiener measure on the Heisenberg group and parabolic equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 67-98. http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a3/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[2] Berestovskii V. N., “Geodezicheskie negolonomnykh levoinvariantnykh vnutrennikh metrik na gruppe Geizenberga i izoperimetriksy ploskosti Minkovskogo”, Sib. matem. zhurn., 35:1 (1994), 3–11

[3] Bogachev V. I., Smolyanov O. G., Deistvitelnyi i funktsionalnyi analiz, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2009

[4] Gelfand I. M., Yaglom A. M., “Integrirovanie v funktsionalnykh prostranstvakh i ego primenenie v kvantovoi fizike”, UMN, 11:1 (67) (1956), 77–114 | MR

[5] Greshnov A. V., “Metriki ravnomerno regulyarnykh prostranstv Karno–Karateodori i ikh kasatelnykh konusov”, Sib. matem. zhurn., 47:2 (2006), 259–292 | MR

[6] Greshnov A. V., “O differentsiruemosti gorizontalnykh krivykh v kvaziprostranstvakh Karno–Karateodori”, Sib. matem. zhurn., 49:1 (2008), 67–86 | MR

[7] Dontsov V. V., “Sistoly ravnomernykh reshetok na gruppe Geizenberga s metrikami Karno–Karateodori”, Fundament. i prikl. matem., 6:2 (2000), 401–432 | MR

[8] Dontsov V. V., “Sistoly na gruppakh Geizenberga s metrikami Karno–Karateodori”, Matem. sb., 192:3 (2001), 27–54 | DOI | MR

[9] Kisil V. V., “Ob algebre psevdodifferentsialnykh operatorov, porozhdennoi svertkami na gruppe Geizenberga”, Sib. matem. zhurn., 34:6 (1993), 75–85 | MR

[10] Kovalchik I. M., “Integral Vinera”, UMN, 18:1 (109) (1963), 97–134 | MR

[11] Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, ONTI, M.–L., 1936 | MR

[12] Levi P., Stokhasticheskie protsessy i brounovskoe dvizhenie, Nauka, M., 1972 | MR

[13] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR

[14] Rashevskii P. K., “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uch. zap. ped. in-ta im. Libknekhta. Ser. fiz.-mat. nauk, 1938, no. 2, 83–94

[15] Sachkova E. F., “Invariantnyi ob'em subrimanova shara na gruppe Geizenberga”, SFNM, 42 (2011), 199–203

[16] Feinman R., Khibbs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR

[17] Shilov G. E., “Integrirovanie v beskonechnomernykh prostranstvakh i integral Vinera”, UMN, 18:2 (110) (1963), 99–120 | MR

[18] Applebaum D., Cohen S., “Lévy processes, pseudo-differential operators and Dirichlet forms in the Heisenberg group”, Ann. Fac. Sci. Toulouse: Math., Sér. 6, 13:2 (2004), 149–177 | DOI | MR

[19] Cameron R. H., Martin W. T., “Transformations of Wiener integrals under translations”, Ann. Math., 45:2 (1944), 386–396 | DOI | MR

[20] Dasgupta A., Molahajloo S., Wong M.-W., “The spectrum of the sub-Laplacian on the Heisenberg group”, Tôhoku Math. J., 63 (2011), 269–276 | DOI | MR

[21] Delporte J., “Fonctions aléatoires presque sûrement continues sur un intervalle fermé”, Ann. Inst. Henri Poincaré, 1:2 (1964), 111–215 | MR

[22] Driver B., Melcher T., “Hypoelliptic heat kernel inequalities on the Heisenberg group”, J. Funct. Anal., 221 (2005), 340–365 | DOI | MR

[23] Gaveau B., “Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents”, Acta Math., 139:1–2 (1977), 95–153 | DOI | MR

[24] Gromov M., “Carnot–Caratheodory spaces seen from within”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996 | MR

[25] Hulanicki A., “The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group”, Stud. Math., 56:2 (1976), 165–173 | DOI | MR

[26] Krantz S. G., Explorations in Harmonic Analysis with Applications to Complex Function Theory and the Heisenberg Group, Springer, Berlin, 2007 | MR

[27] Lévy P., “Le mouvement brownien plan”, Am. J. Math., 62:1 (1940), 487–550 | DOI | MR

[28] Neuenschwander D., Probabilities on the Heisenberg Group. Limit Theorems and Brownian Motion, Lect. Notes Math., 163, Springer, Berlin, 1996 | DOI | MR

[29] Stein E. M., Harmonic Analysis. Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993 | MR

[30] Taylor M. E., Noncommutative Microlocal Analysis, v. I, Memoirs Amer. Math. Soc., 313, Amer. Math. Soc., 1984 | MR

[31] Watanabe S., “Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels”, Ann. Probab., 15:1 (1987), 1–39 | DOI | MR