The Wiener measure on the Heisenberg group and parabolic equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 67-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study questions related to the theory of stochastic processes on Lie nilpotent groups. In particular, we consider the stochastic process on the Heisenberg group $H_3(\mathbb{R})$ whose trajectories satisfy the horizontal conditions in the stochastic sense relative to the standard contact structure on $H_3(\mathbb{R})$. It is shown that this process is a homogeneous Markov process relative to the Heisenberg group operation. There was found a representation in the form of a Wiener integral for a one-parameter linear semigroup of operators for which the Heisenberg sublaplacian generated by basis vector fields of the corresponding Lie algebra $L(H_3)$ is producing. The main method of solving the problem in this paper is using the path integrals technique, which indicates the common direction of further development of the results.
@article{FPM_2016_21_4_a3,
     author = {S. V. Mamon},
     title = {The {Wiener} measure on the {Heisenberg} group and parabolic equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {67--98},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a3/}
}
TY  - JOUR
AU  - S. V. Mamon
TI  - The Wiener measure on the Heisenberg group and parabolic equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 67
EP  - 98
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a3/
LA  - ru
ID  - FPM_2016_21_4_a3
ER  - 
%0 Journal Article
%A S. V. Mamon
%T The Wiener measure on the Heisenberg group and parabolic equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 67-98
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a3/
%G ru
%F FPM_2016_21_4_a3
S. V. Mamon. The Wiener measure on the Heisenberg group and parabolic equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 67-98. http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a3/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[2] Berestovskii V. N., “Geodezicheskie negolonomnykh levoinvariantnykh vnutrennikh metrik na gruppe Geizenberga i izoperimetriksy ploskosti Minkovskogo”, Sib. matem. zhurn., 35:1 (1994), 3–11

[3] Bogachev V. I., Smolyanov O. G., Deistvitelnyi i funktsionalnyi analiz, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2009

[4] Gelfand I. M., Yaglom A. M., “Integrirovanie v funktsionalnykh prostranstvakh i ego primenenie v kvantovoi fizike”, UMN, 11:1 (67) (1956), 77–114 | MR

[5] Greshnov A. V., “Metriki ravnomerno regulyarnykh prostranstv Karno–Karateodori i ikh kasatelnykh konusov”, Sib. matem. zhurn., 47:2 (2006), 259–292 | MR

[6] Greshnov A. V., “O differentsiruemosti gorizontalnykh krivykh v kvaziprostranstvakh Karno–Karateodori”, Sib. matem. zhurn., 49:1 (2008), 67–86 | MR

[7] Dontsov V. V., “Sistoly ravnomernykh reshetok na gruppe Geizenberga s metrikami Karno–Karateodori”, Fundament. i prikl. matem., 6:2 (2000), 401–432 | MR

[8] Dontsov V. V., “Sistoly na gruppakh Geizenberga s metrikami Karno–Karateodori”, Matem. sb., 192:3 (2001), 27–54 | DOI | MR

[9] Kisil V. V., “Ob algebre psevdodifferentsialnykh operatorov, porozhdennoi svertkami na gruppe Geizenberga”, Sib. matem. zhurn., 34:6 (1993), 75–85 | MR

[10] Kovalchik I. M., “Integral Vinera”, UMN, 18:1 (109) (1963), 97–134 | MR

[11] Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, ONTI, M.–L., 1936 | MR

[12] Levi P., Stokhasticheskie protsessy i brounovskoe dvizhenie, Nauka, M., 1972 | MR

[13] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR

[14] Rashevskii P. K., “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uch. zap. ped. in-ta im. Libknekhta. Ser. fiz.-mat. nauk, 1938, no. 2, 83–94

[15] Sachkova E. F., “Invariantnyi ob'em subrimanova shara na gruppe Geizenberga”, SFNM, 42 (2011), 199–203

[16] Feinman R., Khibbs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR

[17] Shilov G. E., “Integrirovanie v beskonechnomernykh prostranstvakh i integral Vinera”, UMN, 18:2 (110) (1963), 99–120 | MR

[18] Applebaum D., Cohen S., “Lévy processes, pseudo-differential operators and Dirichlet forms in the Heisenberg group”, Ann. Fac. Sci. Toulouse: Math., Sér. 6, 13:2 (2004), 149–177 | DOI | MR

[19] Cameron R. H., Martin W. T., “Transformations of Wiener integrals under translations”, Ann. Math., 45:2 (1944), 386–396 | DOI | MR

[20] Dasgupta A., Molahajloo S., Wong M.-W., “The spectrum of the sub-Laplacian on the Heisenberg group”, Tôhoku Math. J., 63 (2011), 269–276 | DOI | MR

[21] Delporte J., “Fonctions aléatoires presque sûrement continues sur un intervalle fermé”, Ann. Inst. Henri Poincaré, 1:2 (1964), 111–215 | MR

[22] Driver B., Melcher T., “Hypoelliptic heat kernel inequalities on the Heisenberg group”, J. Funct. Anal., 221 (2005), 340–365 | DOI | MR

[23] Gaveau B., “Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents”, Acta Math., 139:1–2 (1977), 95–153 | DOI | MR

[24] Gromov M., “Carnot–Caratheodory spaces seen from within”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996 | MR

[25] Hulanicki A., “The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group”, Stud. Math., 56:2 (1976), 165–173 | DOI | MR

[26] Krantz S. G., Explorations in Harmonic Analysis with Applications to Complex Function Theory and the Heisenberg Group, Springer, Berlin, 2007 | MR

[27] Lévy P., “Le mouvement brownien plan”, Am. J. Math., 62:1 (1940), 487–550 | DOI | MR

[28] Neuenschwander D., Probabilities on the Heisenberg Group. Limit Theorems and Brownian Motion, Lect. Notes Math., 163, Springer, Berlin, 1996 | DOI | MR

[29] Stein E. M., Harmonic Analysis. Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993 | MR

[30] Taylor M. E., Noncommutative Microlocal Analysis, v. I, Memoirs Amer. Math. Soc., 313, Amer. Math. Soc., 1984 | MR

[31] Watanabe S., “Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels”, Ann. Probab., 15:1 (1987), 1–39 | DOI | MR