A separation theorem for nonconvex sets and its applications
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 23-66

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove theorems on separation by sphere or (in a general case) by the boundary of a shifted quasiball of two closed disjoint subsets of a Banach space one of which is prox-regular or weakly convex and the other is a summand of a ball or quasiball. These separation theorems are applied for proving some theorems on the continuity of the intersection of two multifunctions, the values of one of them being prox-regular or weakly convex (nonconvex, in general), and the values of the other being convex and summands of a ball or quasiball. As a corollary, a theorem on the continuity of a multifunction with values bounded by the graphs of two functions is obtained.
@article{FPM_2016_21_4_a2,
     author = {G. E. Ivanov and M. S. Lopushanski},
     title = {A separation theorem for nonconvex sets and its applications},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {23--66},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a2/}
}
TY  - JOUR
AU  - G. E. Ivanov
AU  - M. S. Lopushanski
TI  - A separation theorem for nonconvex sets and its applications
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 23
EP  - 66
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a2/
LA  - ru
ID  - FPM_2016_21_4_a2
ER  - 
%0 Journal Article
%A G. E. Ivanov
%A M. S. Lopushanski
%T A separation theorem for nonconvex sets and its applications
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 23-66
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a2/
%G ru
%F FPM_2016_21_4_a2
G. E. Ivanov; M. S. Lopushanski. A separation theorem for nonconvex sets and its applications. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 23-66. http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a2/