A separation theorem for nonconvex sets and its applications
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 23-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove theorems on separation by sphere or (in a general case) by the boundary of a shifted quasiball of two closed disjoint subsets of a Banach space one of which is prox-regular or weakly convex and the other is a summand of a ball or quasiball. These separation theorems are applied for proving some theorems on the continuity of the intersection of two multifunctions, the values of one of them being prox-regular or weakly convex (nonconvex, in general), and the values of the other being convex and summands of a ball or quasiball. As a corollary, a theorem on the continuity of a multifunction with values bounded by the graphs of two functions is obtained.
@article{FPM_2016_21_4_a2,
     author = {G. E. Ivanov and M. S. Lopushanski},
     title = {A separation theorem for nonconvex sets and its applications},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {23--66},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a2/}
}
TY  - JOUR
AU  - G. E. Ivanov
AU  - M. S. Lopushanski
TI  - A separation theorem for nonconvex sets and its applications
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 23
EP  - 66
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a2/
LA  - ru
ID  - FPM_2016_21_4_a2
ER  - 
%0 Journal Article
%A G. E. Ivanov
%A M. S. Lopushanski
%T A separation theorem for nonconvex sets and its applications
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 23-66
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a2/
%G ru
%F FPM_2016_21_4_a2
G. E. Ivanov; M. S. Lopushanski. A separation theorem for nonconvex sets and its applications. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 23-66. http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a2/

[1] Alimov A. R., Karlov M. I., “Mnozhestva s vneshnim chebyshevskim sloem”, Mat. zametki, 69:2 (2001), 303–307 | DOI

[2] Balashov M. V., Ivanov G. E., “Slabo vypuklye i proksimalno gladkie mnozhestva v banakhovykh prostranstvakh”, Izv. RAN. Ser. matem., 73:3 (2009), 23–66 | DOI | MR

[3] Ivanov G. E., Slabo vypuklye mnozhestva i funktsii: teoriya i prilozheniya, Fizmatlit, M., 2006

[4] Ivanov G. E., “Approksimativnye svoistva mnozhestv otnositelno funktsii Minkovskogo”, Problemy fundamentalnoi i prikladnoi matematiki, MFTI, M., 2009, 76–105

[5] Ivanov G. E., Lopushanski M. S., “Approksimativnye svoistva slabo vypuklykh mnozhestv v prostranstvakh s nesimmetrichnoi polunormoi”, Tr. MFTI, 4:4 (2012), 94–104

[6] Ivanov G. E., Lopushanski M. S., “Ischislenie parametrov vypuklosti summy Minkovskogo silno i slabo vypuklykh mnozhestv otnositelno neogranichennogo kvazishara”, Tr. MFTI, 6:2 (2014), 26–37

[7] Alimov A. R., “Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding”, Eurasian Math. J., 3:2 (2012), 21–30 | MR

[8] Balashov M. V., Repovš D., “Uniform convexity and the splitting problem for selections”, J. Math. Anal. Appl., 360:1 (2009), 307–316 | DOI | MR

[9] Balashov M. V., Repovš D., “Weakly convex sets and modulus of nonconvexity”, J. Math. Anal. Appl., 371:1 (2010), 113–127 | DOI | MR

[10] Bernard F., Thibault L., Zlateva N., “Characterization of proximal regular sets in super reflexive Banach spaces”, J. Convex Anal., 13 (2006), 525–559 | MR

[11] Bernard F., Thibault L., Zlateva N., “Prox-regular sets and epigraphs in uniformly convex Banach spaces: Various regularities and other properties”, Trans. Am. Math. Soc., 363 (2011), 2211–2247 | DOI | MR

[12] Bouligand G., “Sur les surfaces dépourvues de points hyperlimites”, Ann. Soc. Polon. Math., 9 (1930), 32–41

[13] Clarke F. H., Stern R. J., Wolenski P. R., “Proximal smoothness and lower-$C^{2}$ property”, J. Convex Anal., 2:1, 2 (1995), 117–144 | MR

[14] Clarkson J. A., “Uniformly convex spaces”, Trans. Am. Math. Soc., 40 (1936), 396–414 | DOI | MR

[15] Day M. M., “Some more uniformly convex spaces”, Bull. Amer. Math. Soc., 47 (1941), 504–507 | DOI | MR

[16] Federer H., “Curvature measures”, Trans. Am. Math. Soc., 93 (1959), 418–491 | DOI | MR

[17] Ivanov G. E., “On well posed best approximation problems for a nonsymmetric seminorm”, J. Convex Anal., 20:2 (2013), 501–529 | MR

[18] Ivanov G. E., “Continuity and selections of the intersection operator applied to nonconvex sets”, J. Convex Anal., 22:4 (2015), 939–962 | MR

[19] Ivanov G. E., “Weak convexity of sets and functions in a Banach space”, J. Convex Anal., 22:2 (2015), 365–398 | MR

[20] Ivanov G. E., Lopushanski M. S., “Well-posedness of approximation and optimization problems for weakly convex sets and functions”, J. Math. Sci., 209:1 (2015), 66–87 | DOI | MR

[21] Poliquin R. A., Rockafellar R. T., “Prox-regular functions in variational analysis”, Trans. Am. Math. Soc., 348 (1996), 1805–1838 | DOI | MR

[22] Poliquin R. A., Rockafellar R. T., Thibault L., “Local differentiability of distance functions”, Trans. Am. Math. Soc., 352 (2000), 5231–5249 | DOI | MR

[23] Vial J.-P., “Strong and weak convexity of sets and functions”, Math. Ops. Res., 8:2 (1983), 231–259 | DOI | MR