A separation theorem for nonconvex sets and its applications
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 23-66
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove theorems on separation by sphere or (in a general case) by the boundary of a shifted quasiball of two closed disjoint subsets of a Banach space one of which is prox-regular or weakly convex and the other is a summand of a ball or quasiball. These separation theorems are applied for proving some theorems on the continuity of the intersection of two multifunctions, the values of one of them being prox-regular or weakly convex (nonconvex, in general), and the values of the other being convex and summands of a ball or quasiball. As a corollary, a theorem on the continuity of a multifunction with values bounded by the graphs of two functions is obtained.
@article{FPM_2016_21_4_a2,
author = {G. E. Ivanov and M. S. Lopushanski},
title = {A separation theorem for nonconvex sets and its applications},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {23--66},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a2/}
}
TY - JOUR AU - G. E. Ivanov AU - M. S. Lopushanski TI - A separation theorem for nonconvex sets and its applications JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 23 EP - 66 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a2/ LA - ru ID - FPM_2016_21_4_a2 ER -
G. E. Ivanov; M. S. Lopushanski. A separation theorem for nonconvex sets and its applications. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 23-66. http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a2/