The inverse problem of magneto-electroencephalography is well-posed: it has a~unique solution that is stable with respect to perturbations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 17-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Contrary to the already prevailing for several decades opinion about the incorrectness of the inverse–MEEG problems (see, for example, the paper of D. Sheltraw and E. Coutsias in Journal of Applied Physics, 94, No. 8, 5307–5315 (2003)), in this note it is shown that this problem is absolutely well posed: it has a unique solution, but in a special class of functions (different from those considered by biophysicists). The solution has the form $\mathbf q=\mathbf q_0+\mathbf p_0\delta|_{\partial Y}$, where $\mathbf q_0$ is an ordinary function defined in the domain of the region $Y$ occupied by the brain, and $\mathbf p_0 \delta|_{\partial Y}$ is a $\delta$-function on the boundary of the domain $Y$ with a certain density $\mathbf p_0$. Moreover, the operator of this problem realizes an isomorphism of the corresponding function spaces. This result was obtained due to the fact that: (1) Maxwell's equations are taken as a basis; (2) a transition was made to the equations for the potentials of the magnetic and electric fields; (3) the theory of boundary value problems for elliptic pseudodifferential operators with an entire index of factorization is used. This allowed us to find the correct functional class of solutions of the corresponding integral equation of the first kind. Namely: the solution has a singular boundary layer in the form of a delta function (with some density) at the boundary of the domain. From the point of view of the MEEG problem, this means that the sought-for current dipoles are also concentrated in the cerebral cortex.
@article{FPM_2016_21_4_a1,
     author = {A. S. Demidov},
     title = {The inverse problem of magneto-electroencephalography is well-posed: it has a~unique solution that is stable with respect to perturbations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {17--22},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a1/}
}
TY  - JOUR
AU  - A. S. Demidov
TI  - The inverse problem of magneto-electroencephalography is well-posed: it has a~unique solution that is stable with respect to perturbations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 17
EP  - 22
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a1/
LA  - ru
ID  - FPM_2016_21_4_a1
ER  - 
%0 Journal Article
%A A. S. Demidov
%T The inverse problem of magneto-electroencephalography is well-posed: it has a~unique solution that is stable with respect to perturbations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 17-22
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a1/
%G ru
%F FPM_2016_21_4_a1
A. S. Demidov. The inverse problem of magneto-electroencephalography is well-posed: it has a~unique solution that is stable with respect to perturbations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 17-22. http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a1/

[1] Demidov A. S., “Ellipticheskie psevdodifferentsialnye kraevye zadachi s malym parametrom pri starshem operatore”, Matem. sb., 91 (133):3 (7) (1973), 421–444

[2] Demidov A. S., “Sur les problèmes elliptiques pseudo-différentiels, à petit paramètre dans l'opérateur principal”, Singular Perturbations and Boundary Layer Theory, Proc. of the Conf. (Ecole Centrale de Lyon, December 8–10, 1976), Lect. Notes Math., 594, eds. C.-M. Brauner, B. Gay, J. Mathieu, Springer, Berlin, 1977, 108–122 | DOI | MR

[3] Gaffney P. W., Powell M. J. D., “Optimal interpolation”, Numerical Analysis, Proc. of the Dundee Conf. on Numerical Analysis (1975), Lect. Notes Math., 506, ed. G. A. Watson, Springer, Berlin, 1976, 90–99 | DOI | MR

[4] Hämäläinen M., Hari R., Ilmoniemi R. J., Knuutila J., Lounasmaa O. V., “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain”, Rev. Modern Phys., 65:2 (1993), 413–497 | DOI

[5] Micchelli C. A., Rivlin T. J., Winograd S., “The optimal recovery of smooth functions”, Numer. Math., 26 (1976), 191–200 | DOI | MR

[6] Osipenko K. Yu., “Optimal recovery of linear functionals and operators”, Commun. Appl. Math. Comput., 30:4 (2016), 459–482 | MR

[7] Stroganova T. A., Posikera I. N., Prokofiev A. O., Morozov A. A., Obukhov Yu. V., Morozov V. A., “EEG alpha activity in the human brain during perception of an illusory kanizsa square”, Neuroscience Behavioral Physiology, 41:2 (2011), 130–139 | DOI