Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_4_a1, author = {A. S. Demidov}, title = {The inverse problem of magneto-electroencephalography is well-posed: it has a~unique solution that is stable with respect to perturbations}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {17--22}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a1/} }
TY - JOUR AU - A. S. Demidov TI - The inverse problem of magneto-electroencephalography is well-posed: it has a~unique solution that is stable with respect to perturbations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 17 EP - 22 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a1/ LA - ru ID - FPM_2016_21_4_a1 ER -
%0 Journal Article %A A. S. Demidov %T The inverse problem of magneto-electroencephalography is well-posed: it has a~unique solution that is stable with respect to perturbations %J Fundamentalʹnaâ i prikladnaâ matematika %D 2016 %P 17-22 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a1/ %G ru %F FPM_2016_21_4_a1
A. S. Demidov. The inverse problem of magneto-electroencephalography is well-posed: it has a~unique solution that is stable with respect to perturbations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 4, pp. 17-22. http://geodesic.mathdoc.fr/item/FPM_2016_21_4_a1/
[1] Demidov A. S., “Ellipticheskie psevdodifferentsialnye kraevye zadachi s malym parametrom pri starshem operatore”, Matem. sb., 91 (133):3 (7) (1973), 421–444
[2] Demidov A. S., “Sur les problèmes elliptiques pseudo-différentiels, à petit paramètre dans l'opérateur principal”, Singular Perturbations and Boundary Layer Theory, Proc. of the Conf. (Ecole Centrale de Lyon, December 8–10, 1976), Lect. Notes Math., 594, eds. C.-M. Brauner, B. Gay, J. Mathieu, Springer, Berlin, 1977, 108–122 | DOI | MR
[3] Gaffney P. W., Powell M. J. D., “Optimal interpolation”, Numerical Analysis, Proc. of the Dundee Conf. on Numerical Analysis (1975), Lect. Notes Math., 506, ed. G. A. Watson, Springer, Berlin, 1976, 90–99 | DOI | MR
[4] Hämäläinen M., Hari R., Ilmoniemi R. J., Knuutila J., Lounasmaa O. V., “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain”, Rev. Modern Phys., 65:2 (1993), 413–497 | DOI
[5] Micchelli C. A., Rivlin T. J., Winograd S., “The optimal recovery of smooth functions”, Numer. Math., 26 (1976), 191–200 | DOI | MR
[6] Osipenko K. Yu., “Optimal recovery of linear functionals and operators”, Commun. Appl. Math. Comput., 30:4 (2016), 459–482 | MR
[7] Stroganova T. A., Posikera I. N., Prokofiev A. O., Morozov A. A., Obukhov Yu. V., Morozov V. A., “EEG alpha activity in the human brain during perception of an illusory kanizsa square”, Neuroscience Behavioral Physiology, 41:2 (2011), 130–139 | DOI