Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_3_a9, author = {N. T. Nemesh}, title = {The geometry of projective, injective, and flat {Banach} modules}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {161--184}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a9/} }
N. T. Nemesh. The geometry of projective, injective, and flat Banach modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 161-184. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a9/
[1] Nemesh N. T., “Metricheski i topologicheski proektivnye idealy banakhovykh algebr”, Matem. zametki, 99:4 (2016), 529–539 | DOI | MR
[2] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo Mosk. un-ta, M., 1986 | MR
[3] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR
[4] Khelemskii A. Ya., “Metricheskaya svoboda i proektivnost dlya klassicheskikh i kvantovykh normirovannykh modulei”, Matem. sb., 204:7 (2013), 127–158 | DOI | MR
[5] Khelemskii A. Ya., Lektsii po funktsionalnomu analizu, MTsNMO, M., 2015
[6] Shteiner S. M., “Topologicheskaya svoboda dlya klassicheskikh i kvantovykh normirovannykh modulei”, Vestn. SamGU. Estestvennonauch. ser., 2013, no. 9/1 (110), 49–57 | Zbl
[7] Albiac F., Kalton N. J., Topics in Banach Space Theory, Grad. Texts Math., 233, Springer, 2006 | MR | Zbl
[8] Blecher D. P., Ozawa N., “Real positivity and approximate identities in Banach algebras”, Pacific J. Math., 277:1 (2015), 1–59 | DOI | MR | Zbl
[9] Blecher D. P., Read C. J., “Operator algebras with contractive approximate identities”, J. Funct. Anal., 261:1 (2011), 188–217 | DOI | MR | Zbl
[10] Bourgain J., New Classes of $\mathscr{L}_p$-Spaces, Springer, 1981 | MR
[11] Bourgain J., “On the Dunford–Pettis property”, Proc. Am. Math. Soc., 81:2 (1981), 265–272 | DOI | MR | Zbl
[12] Dales H. G., Polyakov M. E., “Homological properties of modules over group algebras”, Proc. London Math. Soc., 89:2 (2004), 390–426 | DOI | MR | Zbl
[13] Defant A., Floret K., Tensor Norms and Operator Ideals, North-Holland Math. Stud., 176, Elsevier, 1992 | MR
[14] Fabian M., Habala P., Banach Space Theory, Springer, 2011 | MR | Zbl
[15] González M., Gutiérrez J., “The Dunford–Pettis property on tensor products”, Math. Proc. Cambridge Philos. Soc., 131:1 (2001), 185–192 | MR | Zbl
[16] Graven A. W. M., “Injective and projective Banach modules”, Indag. Math., 82:1 (1979), 253–272 | DOI | MR
[17] Grothendieck A., “Une caractérisation vectorielle-métrique des espaces $L_1$”, Can. J. Math., 7 (1955), 552–561 | DOI | MR | Zbl
[18] Helemskii A. Ya., “Metric version of flatness and Hahn–Banach type theorems for normed modules over sequence algebras”, Stud. Math., 206:2 (2011), 135–160 | DOI | MR | Zbl
[19] Johnson W. B., Lindenstrauss J., Handbook of the Geometry of Banach Spaces, v. 2, Elsevier, 2001 | MR | Zbl
[20] Köthe G., “Hebbare lokalkonvexe Räume”, Math. Ann., 165:3 (1996), 181–195 | MR
[21] Lacey H. E., The Isometric Theory of Classical Banach Spaces, Springer, 1974 | MR | Zbl
[22] Lindenstrauss J., Pelczynski A., “Absolutely summing operators in $\mathscr{L}_p$-spaces and their applications”, Stud. Math., 29:3 (1968), 275–326 | DOI | MR | Zbl
[23] Pier J.-P., Amenable Locally Compact Groups, Wiley-Interscience, 1984 | MR
[24] Racher G., “Injective modules and amenable groups”, Comment. Math. Helv., 88:4 (2013), 1023–1031 | DOI | MR | Zbl
[25] Ramsden P., Homological Properties of Semigroup Algebras, Thesis, University of Leeds, 2009 | MR
[26] Stegall C. P., Retherford J. R., “Fully nuclear and completely nuclear operators with applications to $\mathscr{L}_1$- and $\mathscr{L}_\infty$-spaces”, Trans. Am. Math. Soc., 163 (1972), 457–492 | MR
[27] White M. C., “Injective modules for uniform algebras”, Proc. London Math. Soc., 3:1 (1996), 155–184 | DOI | MR | Zbl