The geometry of projective, injective, and flat Banach modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 161-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove general facts on metrically and topologically projective, injective, and flat Banach modules. We prove theorems pointing to the close connection between metric, topological Banach homology with the geometry of Banach spaces. For example, in geometric terms we give a complete description of projective, injective, and flat annihilator modules. We also show that for an algebra with the geometric structure of an $\mathscr{L}_1$- or $\mathscr{L}_\infty$-space all its homologically trivial modules possess the Dunford–Pettis property.
@article{FPM_2016_21_3_a9,
     author = {N. T. Nemesh},
     title = {The geometry of projective, injective, and flat {Banach} modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {161--184},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a9/}
}
TY  - JOUR
AU  - N. T. Nemesh
TI  - The geometry of projective, injective, and flat Banach modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 161
EP  - 184
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a9/
LA  - ru
ID  - FPM_2016_21_3_a9
ER  - 
%0 Journal Article
%A N. T. Nemesh
%T The geometry of projective, injective, and flat Banach modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 161-184
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a9/
%G ru
%F FPM_2016_21_3_a9
N. T. Nemesh. The geometry of projective, injective, and flat Banach modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 161-184. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a9/

[1] Nemesh N. T., “Metricheski i topologicheski proektivnye idealy banakhovykh algebr”, Matem. zametki, 99:4 (2016), 529–539 | DOI | MR

[2] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo Mosk. un-ta, M., 1986 | MR

[3] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR

[4] Khelemskii A. Ya., “Metricheskaya svoboda i proektivnost dlya klassicheskikh i kvantovykh normirovannykh modulei”, Matem. sb., 204:7 (2013), 127–158 | DOI | MR

[5] Khelemskii A. Ya., Lektsii po funktsionalnomu analizu, MTsNMO, M., 2015

[6] Shteiner S. M., “Topologicheskaya svoboda dlya klassicheskikh i kvantovykh normirovannykh modulei”, Vestn. SamGU. Estestvennonauch. ser., 2013, no. 9/1 (110), 49–57 | Zbl

[7] Albiac F., Kalton N. J., Topics in Banach Space Theory, Grad. Texts Math., 233, Springer, 2006 | MR | Zbl

[8] Blecher D. P., Ozawa N., “Real positivity and approximate identities in Banach algebras”, Pacific J. Math., 277:1 (2015), 1–59 | DOI | MR | Zbl

[9] Blecher D. P., Read C. J., “Operator algebras with contractive approximate identities”, J. Funct. Anal., 261:1 (2011), 188–217 | DOI | MR | Zbl

[10] Bourgain J., New Classes of $\mathscr{L}_p$-Spaces, Springer, 1981 | MR

[11] Bourgain J., “On the Dunford–Pettis property”, Proc. Am. Math. Soc., 81:2 (1981), 265–272 | DOI | MR | Zbl

[12] Dales H. G., Polyakov M. E., “Homological properties of modules over group algebras”, Proc. London Math. Soc., 89:2 (2004), 390–426 | DOI | MR | Zbl

[13] Defant A., Floret K., Tensor Norms and Operator Ideals, North-Holland Math. Stud., 176, Elsevier, 1992 | MR

[14] Fabian M., Habala P., Banach Space Theory, Springer, 2011 | MR | Zbl

[15] González M., Gutiérrez J., “The Dunford–Pettis property on tensor products”, Math. Proc. Cambridge Philos. Soc., 131:1 (2001), 185–192 | MR | Zbl

[16] Graven A. W. M., “Injective and projective Banach modules”, Indag. Math., 82:1 (1979), 253–272 | DOI | MR

[17] Grothendieck A., “Une caractérisation vectorielle-métrique des espaces $L_1$”, Can. J. Math., 7 (1955), 552–561 | DOI | MR | Zbl

[18] Helemskii A. Ya., “Metric version of flatness and Hahn–Banach type theorems for normed modules over sequence algebras”, Stud. Math., 206:2 (2011), 135–160 | DOI | MR | Zbl

[19] Johnson W. B., Lindenstrauss J., Handbook of the Geometry of Banach Spaces, v. 2, Elsevier, 2001 | MR | Zbl

[20] Köthe G., “Hebbare lokalkonvexe Räume”, Math. Ann., 165:3 (1996), 181–195 | MR

[21] Lacey H. E., The Isometric Theory of Classical Banach Spaces, Springer, 1974 | MR | Zbl

[22] Lindenstrauss J., Pelczynski A., “Absolutely summing operators in $\mathscr{L}_p$-spaces and their applications”, Stud. Math., 29:3 (1968), 275–326 | DOI | MR | Zbl

[23] Pier J.-P., Amenable Locally Compact Groups, Wiley-Interscience, 1984 | MR

[24] Racher G., “Injective modules and amenable groups”, Comment. Math. Helv., 88:4 (2013), 1023–1031 | DOI | MR | Zbl

[25] Ramsden P., Homological Properties of Semigroup Algebras, Thesis, University of Leeds, 2009 | MR

[26] Stegall C. P., Retherford J. R., “Fully nuclear and completely nuclear operators with applications to $\mathscr{L}_1$- and $\mathscr{L}_\infty$-spaces”, Trans. Am. Math. Soc., 163 (1972), 457–492 | MR

[27] White M. C., “Injective modules for uniform algebras”, Proc. London Math. Soc., 3:1 (1996), 155–184 | DOI | MR | Zbl