The structure of isomorphisms of universal hypergraphical automata
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 141-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

Universal hypergraphical automata are universally attracted objects in the category of automata, for which the set of states and the set of output symbols are equipped with structures of hypergraphs. It was proved earlier that a wide class of such sort of automata are determined up to isomorphism by their semigroups of input symbols. We investigate a connection between isomorphisms of universal hypergraphical automata and isomorphisms of their components: semigroups of input symbols and hypergraphs of states and output symbols.
@article{FPM_2016_21_3_a8,
     author = {V. A. Molchanov},
     title = {The structure of isomorphisms of universal hypergraphical automata},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {141--159},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a8/}
}
TY  - JOUR
AU  - V. A. Molchanov
TI  - The structure of isomorphisms of universal hypergraphical automata
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 141
EP  - 159
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a8/
LA  - ru
ID  - FPM_2016_21_3_a8
ER  - 
%0 Journal Article
%A V. A. Molchanov
%T The structure of isomorphisms of universal hypergraphical automata
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 141-159
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a8/
%G ru
%F FPM_2016_21_3_a8
V. A. Molchanov. The structure of isomorphisms of universal hypergraphical automata. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 141-159. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a8/

[1] Kartesi F., Vvedenie v konechnye geometrii, Nauka, M., 1980 | MR

[2] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, Mir, M., 1972 | MR

[3] Molchanov V. A., “Konkretnaya kharakterizatsiya universalnykh planarnykh avtomatov”, Fundament. i prikl. matem., 18:3 (2013), 139–148

[4] Molchanov V. A., “Predstavlenie universalnykh planarnykh avtomatov avtonomnymi vkhodnymi signalami”, Izv. Saratov. un-ta. Ser. Matematika. Mekhanika. Informatika, 13:2-2 (2013), 31–37 | Zbl

[5] Molchanov V. A., “Abstraktnaya kharakterizatsiya polugrupp vkhodnykh signalov universalnykh planarnykh avtomatov”, Izv. Saratov. un-ta. Ser. Matematika. Mekhanika. Informatika, 15:1 (2015), 113–121 | Zbl

[6] Plotkin B. I., Gringlaz L. Ya., Gvaramiya A. A., Elementy algebraicheskoi teorii avtomatov, Vysshaya shkola, M., 1994

[7] Berge C., Graphs et hypergraphs, Dunod, Paris, 1970 | MR

[8] Molchanov A. V., “On definability of hypergraphs by their semigroups of homomorphisms”, Semigroup Forum, 62 (2001), 53–65 | DOI | MR | Zbl

[9] Molchanov V. A., “A universal planar automaton is determined by its semigroup of input symbols”, Semigroup Forum, 82 (2011), 1–9 | DOI | MR | Zbl