Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_3_a7, author = {M. I. Kolomeychenko and I. V. Polyakov and A. A. Chepovskiy and A. M. Chepovskiy}, title = {Detection of communities in graph of interactive objects}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {131--139}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a7/} }
TY - JOUR AU - M. I. Kolomeychenko AU - I. V. Polyakov AU - A. A. Chepovskiy AU - A. M. Chepovskiy TI - Detection of communities in graph of interactive objects JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 131 EP - 139 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a7/ LA - ru ID - FPM_2016_21_3_a7 ER -
%0 Journal Article %A M. I. Kolomeychenko %A I. V. Polyakov %A A. A. Chepovskiy %A A. M. Chepovskiy %T Detection of communities in graph of interactive objects %J Fundamentalʹnaâ i prikladnaâ matematika %D 2016 %P 131-139 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a7/ %G ru %F FPM_2016_21_3_a7
M. I. Kolomeychenko; I. V. Polyakov; A. A. Chepovskiy; A. M. Chepovskiy. Detection of communities in graph of interactive objects. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 131-139. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a7/
[1] Bazenkov N. I., Gubanov D. A., “Obzor informatsionnykh sistem analiza sotsialnykh setei”, UBS, 41 (2013), 357–394
[2] Batura T. V., “Metody analiza kompyuternykh sotsialnykh setei”, Vestn. NGU, Ser. Informatsionnye tekhnologii, 10:4 (2012), 13–28
[3] Gubanov D. A., Novikov D. A., Chkhartishvili A. G., Sotsialnye seti: modeli informatsionnogo vliyaniya, upravleniya i protivoborstva, Fizmatlit, M.; MTsNMO, 2010
[4] Kolomeichenko M. I., Chepovskii A. A., Chepovskii A. M., “Algoritm vydeleniya soobschestv v sotsialnykh setyakh”, Fundament. i prikl. matem., 19:1 (2014), 21–32 | MR
[5] Kolomeichenko M. I., Chepovskii A. M., “Vizualizatsiya i analiz grafov bolshikh razmerov”, Biznes-informatika, 2014, no. 4 (30), 7–16
[6] Aggarwal C., Social Network Data Analytics, Springer, New York, 2011 | MR | Zbl
[7] Blondel V. D., Guillaume J.-L., Lambiotte R., Lefebvre E., “The Louvain method for community detection in large networks”, J. Statist. Mech. Theory Experiment, 2008, 108–121
[8] Borgatti P., Everett G., Johnson C., Analyzing Social Networks, SAGE Publ., 2013
[9] Clauset A., Newman M. E., Moore C., “Finding community structure in very large networks”, Phys. Rev. E, 70:6 (2004), 066111 | DOI | MR
[10] Domenico M., Lancichinetti A., Arenas A., Rosvall M., “Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems”, Phys. Rev. X, 5 (2015), 011027
[11] Donetti L., Muñoz M. A., Improved spectral algorithm for the detection of network communities, 2005, arXiv: physics/0504059
[12] Esquivel A., Rosvall M., “Compression of flow can reveal overlapping modular organization in networks”, Phys. Rev. X, 1 (2011), 021025
[13] Fortunato S., “Community detection in graphs”, Phys. Rep., 486 (2010), 75–174 | DOI | MR
[14] Girvan M., Newman M. E., “Community structure in social and biological networks”, Proc. Natl. Acad. Sci. USA, 99 (2002), 7821–7826 | DOI | MR | Zbl
[15] Lambiotte R., Rosvall M., “Ranking and clustering of nodes in networks with smart teleportation”, Phys. Rev. E, 85:5 (2012), 056107 | DOI
[16] Lancichinetti A., Fortunato S., “Community detection algorithms: a comparative analysis”, Phys. Rev. E, 80:5 (2009), 056117 | DOI
[17] Lovasz L., “Random walks on graphs: a survey”, Combinatorics, Paul Erdős is Eighty, Bolyai Soc. Math. Stud., 2, eds. D. Miklós, V. T. Sós, T. Szőnyi, Budapest, 1996, 1–46 | MR
[18] Newman M. E. J., “The structure and function of complex networks”, SIAM Rev., 45:10 (2003), 167–256 | DOI | MR | Zbl
[19] Newman M. E., “Fast algorithm for detecting community structure in networks”, Phys. Rev. E, 69 (2004), 066133 | DOI | MR
[20] Newman M. E., “Modularity and community structure in networks”, Proc. Natl. Acad. Sci. USA, 103 (2006), 8577–8582 | DOI
[21] Newman M. E., Networks: An Introduction, Oxford Univ. Press, Oxford, 2010 | MR | Zbl
[22] Newman M. E., Girvan M., “Finding and evaluating community structure in networks”, Phys. Rev. E, 69 (2004), 026113 | DOI | MR
[23] Palla G., Derenyi I., Farkas I., Vicsek T., “Uncovering the overlapping community structure of complex networks in nature and society”, Nature, 435 (2005), 814–818 | DOI
[24] Radicchi F., Castellano C., Cecconi F., Loreto V., Parisi D., “Defining and identifying communities in networks”, Proc. Natl. Acad. Sci. USA, 101 (2004), 2658–2663 | DOI
[25] Rosvall M., Axelsson D., Bergstrom C. T., “The map equation”, Eur. Phys. J. Special Topics, 178:1 (2009), 13–23 | DOI
[26] Rosvall M., Bergstrom C. T., “An information-theoretic framework for resolving community structure in complex networks”, Proc. Natl. Acad. Sci. USA, 104:18 (2007), 7327–7331 | DOI
[27] Rosvall M., Bergstrom C. T., “Maps of information flow reveal community structure in complex networks”, Proc. Natl. Acad. Sci. USA, 105:4 (2008), 1118–1123 | DOI
[28] Rosvall M., Esquivel A., Lancichinetti A., West J., Lambiotte R., “Memory in network flows and its effects on spreading dynamics and community”, Nature Commun., 5 (2014), 4630 | DOI