Detection of communities in graph of interactive objects
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 131-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article describes the problem of analysis of social network graphs and other interacting objects. It also presents community detection algorithms in social networks, their classification and analysis. In addition, it considers applicability of algorithms for real tasks in social network graph analysis.
@article{FPM_2016_21_3_a7,
     author = {M. I. Kolomeychenko and I. V. Polyakov and A. A. Chepovskiy and A. M. Chepovskiy},
     title = {Detection of communities in graph of interactive objects},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {131--139},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a7/}
}
TY  - JOUR
AU  - M. I. Kolomeychenko
AU  - I. V. Polyakov
AU  - A. A. Chepovskiy
AU  - A. M. Chepovskiy
TI  - Detection of communities in graph of interactive objects
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 131
EP  - 139
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a7/
LA  - ru
ID  - FPM_2016_21_3_a7
ER  - 
%0 Journal Article
%A M. I. Kolomeychenko
%A I. V. Polyakov
%A A. A. Chepovskiy
%A A. M. Chepovskiy
%T Detection of communities in graph of interactive objects
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 131-139
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a7/
%G ru
%F FPM_2016_21_3_a7
M. I. Kolomeychenko; I. V. Polyakov; A. A. Chepovskiy; A. M. Chepovskiy. Detection of communities in graph of interactive objects. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 131-139. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a7/

[1] Bazenkov N. I., Gubanov D. A., “Obzor informatsionnykh sistem analiza sotsialnykh setei”, UBS, 41 (2013), 357–394

[2] Batura T. V., “Metody analiza kompyuternykh sotsialnykh setei”, Vestn. NGU, Ser. Informatsionnye tekhnologii, 10:4 (2012), 13–28

[3] Gubanov D. A., Novikov D. A., Chkhartishvili A. G., Sotsialnye seti: modeli informatsionnogo vliyaniya, upravleniya i protivoborstva, Fizmatlit, M.; MTsNMO, 2010

[4] Kolomeichenko M. I., Chepovskii A. A., Chepovskii A. M., “Algoritm vydeleniya soobschestv v sotsialnykh setyakh”, Fundament. i prikl. matem., 19:1 (2014), 21–32 | MR

[5] Kolomeichenko M. I., Chepovskii A. M., “Vizualizatsiya i analiz grafov bolshikh razmerov”, Biznes-informatika, 2014, no. 4 (30), 7–16

[6] Aggarwal C., Social Network Data Analytics, Springer, New York, 2011 | MR | Zbl

[7] Blondel V. D., Guillaume J.-L., Lambiotte R., Lefebvre E., “The Louvain method for community detection in large networks”, J. Statist. Mech. Theory Experiment, 2008, 108–121

[8] Borgatti P., Everett G., Johnson C., Analyzing Social Networks, SAGE Publ., 2013

[9] Clauset A., Newman M. E., Moore C., “Finding community structure in very large networks”, Phys. Rev. E, 70:6 (2004), 066111 | DOI | MR

[10] Domenico M., Lancichinetti A., Arenas A., Rosvall M., “Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems”, Phys. Rev. X, 5 (2015), 011027

[11] Donetti L., Muñoz M. A., Improved spectral algorithm for the detection of network communities, 2005, arXiv: physics/0504059

[12] Esquivel A., Rosvall M., “Compression of flow can reveal overlapping modular organization in networks”, Phys. Rev. X, 1 (2011), 021025

[13] Fortunato S., “Community detection in graphs”, Phys. Rep., 486 (2010), 75–174 | DOI | MR

[14] Girvan M., Newman M. E., “Community structure in social and biological networks”, Proc. Natl. Acad. Sci. USA, 99 (2002), 7821–7826 | DOI | MR | Zbl

[15] Lambiotte R., Rosvall M., “Ranking and clustering of nodes in networks with smart teleportation”, Phys. Rev. E, 85:5 (2012), 056107 | DOI

[16] Lancichinetti A., Fortunato S., “Community detection algorithms: a comparative analysis”, Phys. Rev. E, 80:5 (2009), 056117 | DOI

[17] Lovasz L., “Random walks on graphs: a survey”, Combinatorics, Paul Erdős is Eighty, Bolyai Soc. Math. Stud., 2, eds. D. Miklós, V. T. Sós, T. Szőnyi, Budapest, 1996, 1–46 | MR

[18] Newman M. E. J., “The structure and function of complex networks”, SIAM Rev., 45:10 (2003), 167–256 | DOI | MR | Zbl

[19] Newman M. E., “Fast algorithm for detecting community structure in networks”, Phys. Rev. E, 69 (2004), 066133 | DOI | MR

[20] Newman M. E., “Modularity and community structure in networks”, Proc. Natl. Acad. Sci. USA, 103 (2006), 8577–8582 | DOI

[21] Newman M. E., Networks: An Introduction, Oxford Univ. Press, Oxford, 2010 | MR | Zbl

[22] Newman M. E., Girvan M., “Finding and evaluating community structure in networks”, Phys. Rev. E, 69 (2004), 026113 | DOI | MR

[23] Palla G., Derenyi I., Farkas I., Vicsek T., “Uncovering the overlapping community structure of complex networks in nature and society”, Nature, 435 (2005), 814–818 | DOI

[24] Radicchi F., Castellano C., Cecconi F., Loreto V., Parisi D., “Defining and identifying communities in networks”, Proc. Natl. Acad. Sci. USA, 101 (2004), 2658–2663 | DOI

[25] Rosvall M., Axelsson D., Bergstrom C. T., “The map equation”, Eur. Phys. J. Special Topics, 178:1 (2009), 13–23 | DOI

[26] Rosvall M., Bergstrom C. T., “An information-theoretic framework for resolving community structure in complex networks”, Proc. Natl. Acad. Sci. USA, 104:18 (2007), 7327–7331 | DOI

[27] Rosvall M., Bergstrom C. T., “Maps of information flow reveal community structure in complex networks”, Proc. Natl. Acad. Sci. USA, 105:4 (2008), 1118–1123 | DOI

[28] Rosvall M., Esquivel A., Lancichinetti A., West J., Lambiotte R., “Memory in network flows and its effects on spreading dynamics and community”, Nature Commun., 5 (2014), 4630 | DOI