Pseudocomplements in the lattice of subvarieties of a~variety of multiplicatively idempotent semirings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 107-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

The lattice $L(\mathfrak M)$ of all subvarieties of the variety $\mathfrak M$ of multiplicatively idempotent semirings is studied. Some relations have been obtained. It is proved that $L(\mathfrak M)$ is a pseudocomplemented lattice. Pseudocomplements in the lattice $L(\mathfrak M)$ are described. It is shown that they form a $64$-element Boolean lattice with respect to the inclusion. It is established that the lattice $L(\mathfrak M)$ is infinite and nonmodular.
@article{FPM_2016_21_3_a5,
     author = {E. M. Vechtomov and A. A. Petrov},
     title = {Pseudocomplements in the lattice of subvarieties of a~variety of multiplicatively idempotent semirings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {107--120},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a5/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - A. A. Petrov
TI  - Pseudocomplements in the lattice of subvarieties of a~variety of multiplicatively idempotent semirings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 107
EP  - 120
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a5/
LA  - ru
ID  - FPM_2016_21_3_a5
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A A. A. Petrov
%T Pseudocomplements in the lattice of subvarieties of a~variety of multiplicatively idempotent semirings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 107-120
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a5/
%G ru
%F FPM_2016_21_3_a5
E. M. Vechtomov; A. A. Petrov. Pseudocomplements in the lattice of subvarieties of a~variety of multiplicatively idempotent semirings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 107-120. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a5/

[1] Vernikov B. M., Volkov M. V., “Dopolneniya v reshetkakh mnogoobrazii i kvazimnogoobrazii”, Izv. vyssh. uchebn. zaved. Matematika, 1982, no. 11, 17–20 | Zbl

[2] Vechtomov E. M., Petrov A. A., “Multiplikativno idempotentnye polukoltsa”, Fundament. i prikl. matem., 18:4 (2013), 41–70 | MR

[3] Vechtomov E. M., Petrov A. A., “Multiplikativno idempotentnye polukoltsa s tozhdestvom $x+2xyx=x$”, Vestn. Syktyvkar. un-ta. Ser 1: Matematika, mekhanika, informatika, 2013, no. 17, 44–52

[4] Vechtomov E. M., Petrov A. A., “Mnogoobrazie polukolets, porozhdennoe dvukhelementnymi polukoltsami s kommutativnym idempotentnym umnozheniem”, Chebyshevskii sb., 15:3 (2014), 12–30 | MR

[5] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982 | MR

[6] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 2, Mir, M., 1972 | MR

[7] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR

[8] Polin S. V., “Minimalnye mnogoobraziya polukolets”, Matem. zametki, 27:4 (1980), 527–537 | MR | Zbl

[9] Skornyakov L. A., Elementy teorii struktur, Nauka, M., 1982 | MR

[10] Shevrin L. N., Vernikov B. M., Volkov M. V., “Reshetka mnogoobrazii polugrupp”, Izv. vyssh. uchebn. zaved. Matematika, 2009, no. 3, 3–36 | MR | Zbl

[11] Pastijn F., “Varieties generated by ordered bands. II”, Order, 22 (2005), 129–143 | DOI | MR | Zbl

[12] Pastijn F., Romanowska A., “Idempotent distributive semirings. I”, Acta Sci. Math., 44 (1982), 239–253 | MR | Zbl