Construction of optimal B\'ezier splines
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 57-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a construction of a smooth curve by a set of interpolation nodes. The curve is constructed as a spline consisting of cubic Bézier curves. We show that if we require the continuity of the first and second derivatives, then such a spline is uniquely defined for any fixed parameterization of Bézier curves. The control points of Bézier curves are calculated as a solution of a system of linear equations with a four-diagonal band matrix. We consider various ways of parameterization of Bézier curves that make up a spline and their influence on its shape. The best spline is computed as a solution of an optimization problem: minimize the integral of the square of the second derivative with a fixed total transit time of a spline.
@article{FPM_2016_21_3_a3,
     author = {V. V. Borisenko},
     title = {Construction of optimal {B\'ezier} splines},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {57--72},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a3/}
}
TY  - JOUR
AU  - V. V. Borisenko
TI  - Construction of optimal B\'ezier splines
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 57
EP  - 72
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a3/
LA  - ru
ID  - FPM_2016_21_3_a3
ER  - 
%0 Journal Article
%A V. V. Borisenko
%T Construction of optimal B\'ezier splines
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 57-72
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a3/
%G ru
%F FPM_2016_21_3_a3
V. V. Borisenko. Construction of optimal B\'ezier splines. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 57-72. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a3/

[1] A primer on Bézier curves: A free, online book for when you really need to know how to do Bézier things, http://pomax.github.io/bezierinfo/

[2] Bartels R. H., Beatty J. C., Barsky B. A., “Bézier Curves”, An Introduction to Splines for Use in Computer Graphics and Geometric Modelling, Morgan Kaufmann, San Francisco, 1998, 211–245 | MR

[3] De Boor C., A Practical Guide to Splines, Springer, 1978 | MR | Zbl

[4] Hill climbing, https://en.wikipedia.org/wiki/Hill_climbing

[5] Knott G. D., Interpolating Cubic Splines, Springer, 2012 | MR

[6] Nocedal J., Wright S. J., Numerical Optimization, Springer, New York, 1999 | MR | Zbl

[7] Shikin E. V., Plis A. I., Handbook on Splines for the User, CRC Press, 1995 | MR | Zbl