Complete systems of eigenfunctions of the Vladimirov operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 39-56

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct new bases of real functions from $L^{2}(B_{r})$ and from $L^{2}(\mathbb{Q}_{p})$. These functions are eigenfunctions of the $p$-adic pseudo-differential Vladimirov operator, which is defined on a compact set $B_{r}\subset\mathbb{Q}_{p}$ of the field of $p$-adic numbers $\mathbb{Q}_{p}$ or, respectively, on the entire field $\mathbb{Q}_{p}$. A relation between the basis of functions from $L^{2}(\mathbb{Q}_{p})$ and the basis of $p$-adic wavelets from $L^{2}(\mathbb{Q}_{p})$ is found. As an application, we consider the solution of the Cauchy problem with the initial condition on a compact set for a pseudo-differential equation with a general pseudo-differential operator that is diagonal in the basis constructed.
@article{FPM_2016_21_3_a2,
     author = {A. Kh. Bikulov and A. P. Zubarev},
     title = {Complete systems of eigenfunctions of the {Vladimirov} operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {39--56},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a2/}
}
TY  - JOUR
AU  - A. Kh. Bikulov
AU  - A. P. Zubarev
TI  - Complete systems of eigenfunctions of the Vladimirov operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 39
EP  - 56
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a2/
LA  - ru
ID  - FPM_2016_21_3_a2
ER  - 
%0 Journal Article
%A A. Kh. Bikulov
%A A. P. Zubarev
%T Complete systems of eigenfunctions of the Vladimirov operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 39-56
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a2/
%G ru
%F FPM_2016_21_3_a2
A. Kh. Bikulov; A. P. Zubarev. Complete systems of eigenfunctions of the Vladimirov operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 39-56. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a2/