Complete systems of eigenfunctions of the Vladimirov operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 39-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct new bases of real functions from $L^{2}(B_{r})$ and from $L^{2}(\mathbb{Q}_{p})$. These functions are eigenfunctions of the $p$-adic pseudo-differential Vladimirov operator, which is defined on a compact set $B_{r}\subset\mathbb{Q}_{p}$ of the field of $p$-adic numbers $\mathbb{Q}_{p}$ or, respectively, on the entire field $\mathbb{Q}_{p}$. A relation between the basis of functions from $L^{2}(\mathbb{Q}_{p})$ and the basis of $p$-adic wavelets from $L^{2}(\mathbb{Q}_{p})$ is found. As an application, we consider the solution of the Cauchy problem with the initial condition on a compact set for a pseudo-differential equation with a general pseudo-differential operator that is diagonal in the basis constructed.
@article{FPM_2016_21_3_a2,
     author = {A. Kh. Bikulov and A. P. Zubarev},
     title = {Complete systems of eigenfunctions of the {Vladimirov} operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {39--56},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a2/}
}
TY  - JOUR
AU  - A. Kh. Bikulov
AU  - A. P. Zubarev
TI  - Complete systems of eigenfunctions of the Vladimirov operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 39
EP  - 56
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a2/
LA  - ru
ID  - FPM_2016_21_3_a2
ER  - 
%0 Journal Article
%A A. Kh. Bikulov
%A A. P. Zubarev
%T Complete systems of eigenfunctions of the Vladimirov operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 39-56
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a2/
%G ru
%F FPM_2016_21_3_a2
A. Kh. Bikulov; A. P. Zubarev. Complete systems of eigenfunctions of the Vladimirov operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 39-56. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a2/

[1] Avetisov V. A., Bikulov A. Kh., Zubarev A. P., “O matematicheskom modelirovanii molekulyarnykh «nano-mashin»”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 1:22 (2011), 9–15 | DOI

[2] Avetisov V. A., Bikulov A. Kh., Zubarev A. P., “Ultrametricheskoe sluchainoe bluzhdanie i dinamika belkovykh molekul”, Tr. MIAN, 285, 2014, 9–32 | MR | Zbl

[3] Bikulov A. Kh., Volovich I. V., “$p$-adicheskoe brounovskoe dvizhenie”, Izv. RAN. Ser. matem., 61:3 (1997), 75–90 | DOI | MR | Zbl

[4] Bikulov A. Kh., Zubarev A. P., Kaidalova L. V., “Ierarkhicheskaya dinamicheskaya model finansovogo rynka vblizi tochki obvala i $p$-adicheskii matematicheskii analiz”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 42 (2006), 135–140 | DOI

[5] Vladimirov V. S., “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, UMN, 43 (1989), 17–53

[6] Vladimirov V. S., “O spektre nekotorykh psevdodifferentsialnykh operatorov nad polem $p$-adicheskikh chisel”, Algebra i analiz, 2:6 (1990), 107–124

[7] Vladimirov V. S., “O razvetvlennykh kharakterakh gruppy idelei odnoklassnykh kvadratichnykh polei”, Tr. MIAN, 224, 1999, 122–129 | Zbl

[8] Kozyrev S. V., “Analiz vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. Matem., 66:2 (2002), 149–158 | DOI | MR | Zbl

[9] Kozyrev S. V., “$p$-adicheskie psevdodifferentsialnye operatory i $p$-adicheskie vspleski”, Teor. i matem. fiz., 138:3 (2004), 383–394 | DOI | MR | Zbl

[10] Kozyrev S. V., Khrennikov A. Yu., “Psevdodifferentsialnye operatory na ultrametricheskikh prostranstvakh i ultrametricheskie vspleski”, Izv. RAN. Ser. matem., 69:5 (2005), 133–148 | DOI | MR | Zbl

[11] Smolyanov O. G., Shamarov N. N., “Formuly Feinmana i integraly po traektoriyam dlya evolyutsionnykh uravnenii s operatorom Vladimirova”, Tr. Matem. in-ta im. V. A. Steklova RAN, 265, 2009, 229–240 | Zbl

[12] Smolyanov O. G., Shamarov N. N., “Gamiltonovy formuly Feinmana dlya uravnenii, soderzhaschikh operator Vladimirova s peremennymi koeffitsientami”, Dokl. RAN, 440:5 (2011), 597–602 | Zbl

[13] Albeverio S., Khrennikov A. Yu., Shelkovich V. M., Theory of $p$-Adic Distributions: Linear and Nonlinear Models, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[14] Avetisov V. A., Bikulov A. Kh., Kozyrev S. V., Osipov V. A., “$p$-adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A: Math. Gen., 35 (2002), 177–189 | DOI | MR | Zbl

[15] Avetisov V. A., Bikulov A. Kh., Osipov V. A., “$p$-adic description of characteristic relaxation in complex systems”, J. Phys. A: Math. Gen., 36 (2003), 4239–4246 | DOI | MR | Zbl

[16] Avetisov V. A., Bikulov A. Kh., Zubarev A. P., “First passage time distribution and the number of returns for ultrametric random walks”, J. Phys. A: Math. Theor., 42 (2009), 085003–085020 | DOI | MR

[17] Bachas C. P., Huberman B. A., “Complexity and the relaxation of hierarchical structures”, Phys. Rev. Lett., 57 (1986), 1965–1969 | DOI | MR

[18] Bikulov A. Kh., Zubarev A. P., “Application of $p$-adic analysis methods in describing Markov processes on ultrametric spaces isometrically embedded into $Q_p$”, $p$-Adic Numbers Ultrametric Analysis Appl., 7:2 (2015), 111–122 | DOI | MR

[19] Dolgopolov M. V., Zubarev A. P., “Some aspects of $m$-adic analysis and its applications to $m$-adic stochastic processes”, $p$-Adic Numbers Ultrametric Analysis Appl., 3:1 (2011), 39–51 | DOI | MR | Zbl

[20] Dragovich B., Khrennikov A. Yu., Kozyrev S. V., Volovich I. V., “On $p$-adic mathematical physics”, $p$-Adic Numbers Ultrametric Analysis and Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl

[21] Hewitt E., Ross K. A., Abstract Harmonic Analysis, Springer, Berlin, 1987

[22] Kochubei A. N., Pseudodifferential Equations and Stochastics over Non-Archimedean Fields, CRC Press, New York, 2001 | MR

[23] Motyl W. G., “Dynamics on random ultrametric spaces”, J. Phys. A: Math. Gen., 20 (1987), 5481–5488 | DOI | MR

[24] Vladimirov V. S., $p$-Adic Analysis and $p$-Adic Quantum Mechanics, Ann. New York Acad. Sci.: Symp. Frontiers Math., 1988 | MR

[25] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adic Analysis and Mathematical Physics, World Scientific, Singapure, 1994 | MR | Zbl