Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_3_a2, author = {A. Kh. Bikulov and A. P. Zubarev}, title = {Complete systems of eigenfunctions of the {Vladimirov} operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {39--56}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a2/} }
TY - JOUR AU - A. Kh. Bikulov AU - A. P. Zubarev TI - Complete systems of eigenfunctions of the Vladimirov operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 39 EP - 56 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a2/ LA - ru ID - FPM_2016_21_3_a2 ER -
%0 Journal Article %A A. Kh. Bikulov %A A. P. Zubarev %T Complete systems of eigenfunctions of the Vladimirov operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$ %J Fundamentalʹnaâ i prikladnaâ matematika %D 2016 %P 39-56 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a2/ %G ru %F FPM_2016_21_3_a2
A. Kh. Bikulov; A. P. Zubarev. Complete systems of eigenfunctions of the Vladimirov operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 39-56. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a2/
[1] Avetisov V. A., Bikulov A. Kh., Zubarev A. P., “O matematicheskom modelirovanii molekulyarnykh «nano-mashin»”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 1:22 (2011), 9–15 | DOI
[2] Avetisov V. A., Bikulov A. Kh., Zubarev A. P., “Ultrametricheskoe sluchainoe bluzhdanie i dinamika belkovykh molekul”, Tr. MIAN, 285, 2014, 9–32 | MR | Zbl
[3] Bikulov A. Kh., Volovich I. V., “$p$-adicheskoe brounovskoe dvizhenie”, Izv. RAN. Ser. matem., 61:3 (1997), 75–90 | DOI | MR | Zbl
[4] Bikulov A. Kh., Zubarev A. P., Kaidalova L. V., “Ierarkhicheskaya dinamicheskaya model finansovogo rynka vblizi tochki obvala i $p$-adicheskii matematicheskii analiz”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 42 (2006), 135–140 | DOI
[5] Vladimirov V. S., “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, UMN, 43 (1989), 17–53
[6] Vladimirov V. S., “O spektre nekotorykh psevdodifferentsialnykh operatorov nad polem $p$-adicheskikh chisel”, Algebra i analiz, 2:6 (1990), 107–124
[7] Vladimirov V. S., “O razvetvlennykh kharakterakh gruppy idelei odnoklassnykh kvadratichnykh polei”, Tr. MIAN, 224, 1999, 122–129 | Zbl
[8] Kozyrev S. V., “Analiz vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. Matem., 66:2 (2002), 149–158 | DOI | MR | Zbl
[9] Kozyrev S. V., “$p$-adicheskie psevdodifferentsialnye operatory i $p$-adicheskie vspleski”, Teor. i matem. fiz., 138:3 (2004), 383–394 | DOI | MR | Zbl
[10] Kozyrev S. V., Khrennikov A. Yu., “Psevdodifferentsialnye operatory na ultrametricheskikh prostranstvakh i ultrametricheskie vspleski”, Izv. RAN. Ser. matem., 69:5 (2005), 133–148 | DOI | MR | Zbl
[11] Smolyanov O. G., Shamarov N. N., “Formuly Feinmana i integraly po traektoriyam dlya evolyutsionnykh uravnenii s operatorom Vladimirova”, Tr. Matem. in-ta im. V. A. Steklova RAN, 265, 2009, 229–240 | Zbl
[12] Smolyanov O. G., Shamarov N. N., “Gamiltonovy formuly Feinmana dlya uravnenii, soderzhaschikh operator Vladimirova s peremennymi koeffitsientami”, Dokl. RAN, 440:5 (2011), 597–602 | Zbl
[13] Albeverio S., Khrennikov A. Yu., Shelkovich V. M., Theory of $p$-Adic Distributions: Linear and Nonlinear Models, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl
[14] Avetisov V. A., Bikulov A. Kh., Kozyrev S. V., Osipov V. A., “$p$-adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A: Math. Gen., 35 (2002), 177–189 | DOI | MR | Zbl
[15] Avetisov V. A., Bikulov A. Kh., Osipov V. A., “$p$-adic description of characteristic relaxation in complex systems”, J. Phys. A: Math. Gen., 36 (2003), 4239–4246 | DOI | MR | Zbl
[16] Avetisov V. A., Bikulov A. Kh., Zubarev A. P., “First passage time distribution and the number of returns for ultrametric random walks”, J. Phys. A: Math. Theor., 42 (2009), 085003–085020 | DOI | MR
[17] Bachas C. P., Huberman B. A., “Complexity and the relaxation of hierarchical structures”, Phys. Rev. Lett., 57 (1986), 1965–1969 | DOI | MR
[18] Bikulov A. Kh., Zubarev A. P., “Application of $p$-adic analysis methods in describing Markov processes on ultrametric spaces isometrically embedded into $Q_p$”, $p$-Adic Numbers Ultrametric Analysis Appl., 7:2 (2015), 111–122 | DOI | MR
[19] Dolgopolov M. V., Zubarev A. P., “Some aspects of $m$-adic analysis and its applications to $m$-adic stochastic processes”, $p$-Adic Numbers Ultrametric Analysis Appl., 3:1 (2011), 39–51 | DOI | MR | Zbl
[20] Dragovich B., Khrennikov A. Yu., Kozyrev S. V., Volovich I. V., “On $p$-adic mathematical physics”, $p$-Adic Numbers Ultrametric Analysis and Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl
[21] Hewitt E., Ross K. A., Abstract Harmonic Analysis, Springer, Berlin, 1987
[22] Kochubei A. N., Pseudodifferential Equations and Stochastics over Non-Archimedean Fields, CRC Press, New York, 2001 | MR
[23] Motyl W. G., “Dynamics on random ultrametric spaces”, J. Phys. A: Math. Gen., 20 (1987), 5481–5488 | DOI | MR
[24] Vladimirov V. S., $p$-Adic Analysis and $p$-Adic Quantum Mechanics, Ann. New York Acad. Sci.: Symp. Frontiers Math., 1988 | MR
[25] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adic Analysis and Mathematical Physics, World Scientific, Singapure, 1994 | MR | Zbl